
xPilot: A Platform-Based Behavioral
Synthesis System

Deming Chen, Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, Zhiru Zhang
University of California, Los Angeles

Email: {demingc, cong, fanyp, leohgl, wjiang, zhiruz}@cs.ucla.edu

Abstract— Behavioral synthesis is an automated design process
that compiles functional and/or algorithmic descriptions into
optimized hardware architectures. It has long been identified
as one of the critical technologies for enabling the transition to
the higher level of abstraction. Unfortunately, it stumbled in its
debut on the EDA marketplace during the mid-1990s and so far
has had a limited adoption among chip designers.

With the billion-transistor chip on the horizon, the design com-
plexity of integrated circuit systems is outgrowing the capabilities
of current RTL methods. This brought about a renewed interest
in behavioral synthesis, and innovations are required to address
the new challenges in nanometer IC designs.

In this paper we present thexPilot behavioral synthesis system
being developed at UCLA. xPilot aims to provide novel platform-
based synthesis technologies to optimize logic, interconnects,
performance, and power simultaneously at the high level. The
ultimate goal is to improve both design productivity and quality
of results. Preliminary experiments on FPGAs demonstrate the
efficacy of our approach on a wide range of applications and its
value in exploring various design tradeoffs.

I. M OTIVATION

The design complexity of integrated circuit systems is
outgrowing the capabilities of traditional RTL methods, and
it is commonly acknowledged that the ultimate solution is to
move to the next level of abstraction beyond RTL. Electronic
system-level (ESL) design automation has been identified by
Dataquest [1] as the next productivity boost for the semi-
conductor industry. However, despite some recent success in
ESL simulation, the transition to ESL design will not be
as well accepted as the transition to RTL without robust
and efficient behavioral synthesis (also known as high-level
synthesis) technology that automatically compiles functional
and/or algorithmic descriptions into optimized hardware ar-
chitectures.

Unfortunately, although behavioral synthesis has been a
topic of research for almost two decades, it stumbled in its
debut on the EDA marketplace during the mid-1990s and so
far has had a limited adoption among chip designers. There
were several reasons for the previous failure of behavioral
synthesis. First, one may argue that design complexity was
still manageable at the RT level a decade ago, and hardware
designs were carried out with traditional HDLs such as VHDL
and Verilog in a cycle-accurate manner. Also, in the 1990s
the industry was still struggling with timing closure between
logic and physical designs. There was no dependable RTL to
GDSII flow to support behavior synthesis. More importantly,
the results produced by previous behavioral synthesis tools

were often inferior to manual designs. This further prevented
the market success of an automatic synthesis approach at the
high level.

In today’s nanometer-scale technologies, it is perfectly
feasible to design an System-on-a-Chip (SoC) device with
over 500 million transistors [2], and billion-transistor chips
are already on the horizon. Even with the availability of a
new generation of robust RTL-to-GDSII flows, this extreme
complexity can no longer be efficiently handled by the current
RTL-based methodologies. Therefore, behavioral synthesis is
experiencing renewed interest after a long drought. We believe
that behavior-level design and synthesis is becoming an imper-
ative step in EDA design flows as it provides these combined
advantages:

(i) Better complexity management: Design abstraction is
one of the most effective methods for controlling rising
complexity and improving design productivity. For exam-
ple, a recent study from NEC [3] shows that a typical RTL
design requires about 300K lines of code, clearly beyond
what can be handled by a human designer. However, the
code density can be improved by nearly 10× when moved
to the behavior level. This results in a human-manageable
40K lines of behavioral description.
In addition to the line-count reduction in design spec-
ifications, behavioral synthesis has the added value of
allowing efficient reuse of behavioral IPs. As opposed
to the RTL IPs which have fixed micro-architectures and
interface protocols, a behavioral IP can be synthesized to
various implementations (e.g., with different performance
throughput) to match different system requirements.

(ii) Shorter verification/simulation cycle: Behavioral syn-
thesis allows the designers to start with a specification in
a high-level programming language (HLL) such as C or
SystemC [4] that is directly executable and simulatable
with high speed. According to the same study from NEC
in [3], the simulation speed at behavior level is up to
100× faster than the one at RT level. To be more concrete,
this means that an RTL design which requires dozens of
simulation hours can be simulated in minutes at behavior
level.
More importantly, behavioral synthesis automatically
compiles the input descriptions into RTL code through a
series of formal constructive optimizations and transfor-
mations. This avoids the slow error-prone manual process

where misinterpretations, syntax errors, and logical mis-
takes are easily introduced. Thus the design verification
and debugging effort will be greatly simplified.

(iii) Rapid system exploration: Given the high design com-
plexity and tight schedule, designers currently prioritize
time-to-market over design optimization. For hardware
design, they tend to commit to one specific micro-
architecture implementation during the early stage even if
more optimized alternatives are potentially available. On
the other hand, behavioral synthesis tools excel at gener-
ating multiple RTL implementations from one functional
specification by varying the design constraints. This can
help hardware designers efficiently evaluate tradeoffs in
micro-architectures and algorithms.
Furthermore, designing a modern embedded system is
a much larger problem than just building the hardware
gates. With the coexistence of micro-processors, DSPs,
memories and custom logic on a single chip, more
software elements are involved in the design process.
One of the fundamental challenges of system-level design
is the hardware/software partitioning, a task that is too
complex to be feasible at the RT level.
HLL-based design methodologies (especially C-based
designs) offer a promising solution to this problem.
Unlike HDLs, HLLs are originally designed for software
programming. With the aid of behavioral synthesis, they
can also be used to specify functionality in hardware. In
this flow, designers can quickly experiment with different
hardware/software boundaries by co-simulating the HLL
descriptions and the automatically synthesized RTLs.

(iv) Higher quality of results: VLSI designs in current semi-
conductor technologies are already limited by intercon-
nect, and the interconnect delay and power are predicted
to have an even larger impact as technology advances.
However, at the RT level, it is extremely difficult for
designers to accurately estimate the interconnects which
are determined by downstream physical design tools.
To achieve timing and power closure, designers have to
adjust the initial RTL in an adhoc manner and iterate over
the time-consuming synthesis and layout process.
We believe that the full consideration of physical reality
during behavioral synthesis will lead to higher quality of
results. By integrating automatic high-level optimizations
together with physical planning, logic and interconnects
can be optimized simltaneously.

In this paper we present thexPilot behavioral synthesis
system being developed at UCLA. The goal of xPilot is to
provide novel platform-based behavior synthesis technologies
to optimize logic, interconnects, performance, and power si-
multaneously (which becomes much more difficult for human
designers), so that we can improve both design productivity
and quality of results.

The reminder of this paper is organized as follows: Sec-
tion II presents an overview of the xPilot infrastructure and
the main features of current xPilot implementation. Section III
and Section IV briefly discuss the system front end and the

xxPPiilloott hhiigghh--lleevveell

ssyynntthheessiiss eennggiinnee

SSSSDDMM//CCDDFFGG

RRTTLL ssyynntthheessiiss aanndd
pphhyyssiiccaall ddeessiiggnn

RRTTLL ggeenneerraattiioonn

SSSSDDMM//SSTTGG

FFSSMM wwiitthh DDaattaappaatthh
 iinn VVHHDDLL

FFlloooorrppllaann aanndd//oorr mmuullttii--
ccyyccllee ppaatthh ccoonnssttrraaiinnttss

SSDM
(System Synthesis

Data Model)

SSyysstteemmCC//CC ssppeecciiffiiccaattiioonn

PPllaattffoorrmm
ddeessccrriippttiioonn

&& ccoonnssttrraaiinnttss

AArrcchhiitteeccttuurraall SSyynntthheessiiss

SScchheedduulliinngg

CCoommppiillaattiioonn FFrroonntt eenndd

Fig. 1. xPilot behavioral synthesis framework

core synthesis engine. The preliminary experimental results
are shown in Section V.

II. XPILOT SYSTEM OVERVIEW

The overall design flow of the xPilot system is shown in
Figure 1. xPilot accepts synthesizable C or SystemC as input.
The behavioral description is first parsed and optimized by
the UIUC LLVM compiler infrastructure [5]. A system-level
synthesis data model (SSDM) is then constructed from the
LLVM’s internal representation. The basic building blocks in
SSDM are processes and channels. Aprocessdescribes the
behavior of one module, and each process uses a control
data flow graph (CDFG) to capture its behavior. Each process
interacts with other processes throughports and channels.
Each channel implements some interface to implement certain
communication protocols. Altogether, an SSDM defines a
process network to model the concurrent behavior of a com-
plex system. On top of SSDM, xPilot performs platform-based
synthesis and physical-aware optimizations during scheduling
and resource binding; these construct an optimized state tran-
sition diagram (STG) and an associated datapath model. At
the back end, xPilot generates RTL implementations together
with constraint files (e.g., multi-cycle path constraints, phys-
ical location constraints, etc.) to leverage the existing logic
synthesis and physical design toolset.

In its current stage, xPilot exhibits the following features:
• Applicable to a wide range of application do-

mains: xPilot can efficiently support various types
of behavioral descriptions with different characteris-
tics, such as computation-intensive (e.g., DSP kernels),
data/memory-intensive (e.g., multi-media applications),
control-intensive (e.g., controllers), etc. Moreover, xPilot
accepts either untimed or partially timed behavioral speci-
fication. Cycle-accurate I/O protocols can be specified for
interfacing with the surrounding modules.

• Amenable to a rich set of synthesis constraints:
xPilot honors a variety of synthesis constraints that can
be either implicitly derived from the input descriptions

(e.g., dependency constraints) and target platform (e.g.,
resource limits), or explicitly specified by the users,
such as frequency constraint, latency constraints, relative
I/O timing constraints (cycle-fixed mode, superstate-fixed
mode, free-floating mode), etc.

• Platform-based synthesis and optimization: xPilot
takes advantage of the target plaform information to
carry out more informed synthesis and optimization. The
platform specification shall characterize the delay, area,
and power for each type of available resource (e.g.,
functional units, memories, steering logic, etc.) under
different input/output count and bitwidth configurations.

• Extensible to consider physical information: In xPilot,
every module is readily extensible to consider layout
information. The ongoing research aims at simultaneously
integrating synthesis techniques, such as scheduling and
resource binding, with the physical planning engine to
optimize the communications together with the computa-
tions.

III. XPILOT FRONT END

xPilot accepts synthesizable C or SystemC as input. C
language is effective for describing sequential behavior within
one single module of the entire system. SystemC [4], on the
other hand, provides the capability to capture many hardware-
specific features such as process-level parallelism and the com-
munication/synchronization among the concurrent modules.

Our front end complier translates design descriptions written
in C or SystemC into SSDM — the internal data model of
xPilot. Currently, we use the UIUC LLVM compiler [5] to
parse in C/SystemC code. LLVM consists of a GCC-based
C/C++ front end, a virtual instruction set, a link-time opti-
mization framework, and various back ends for common target
machines. We leverage the GCC-based front end compiler
to obtain an LLVM intermediate representation (IR). On top
of this IR, we first recover certain high-level programming
constructs from the low-level virtual instruction set. We then
perform elaboration to extract the processes, ports, channels
and their interconnection topologies, and construct our SSDM
accordingly based on this information.

Another major task at the front end is platform characteri-
zation. Specifically, we characterize the delay, area, and power
for each type of available resource (e.g., functional units,
memories, steering logic, etc.) under different input/output
count and bitwidth configurations. We also capture the layout
information of the target platform to facilitate our physical-
aware synthesis. The heterogeneous resources distribution map
and the interconnect delay/power lookup tables will be also
collected.

IV. SYNTHESIS ENGINE

In this section we will highlight xPilot synthesis engine,
which includes scheduling and resource binding.

A. Scheduling

One of the major drawbacks to previous scheduling tech-
niques in behavioral synthesis is the limited applicability to
a specific class of algorithms and lack of efficient support
of various design constraints. To address this problem, we
propose a unified performance-driven scheduling algorithm
which provides efficient solution for a wide range of ap-
plication domains (e.g., computation-intensive applications,
data/memory-intensive applications, control-intensive applica-
tions, etc.) and honors a rich set of real-life design constraints
(e.g., clock frequency constraint, latency constraint, relative
timing constraint, resource constraint, IO constraint, etc.).

Specifically, we represent all the scheduling constraints
as a system of pairwise difference equations. Using this
formulation, the feasibility check of the constraint system can
be carried out efficiently by solving a single-source shortest
path problem. We can also express the performance objective
as a linear function so that the global optimization can be
performed by any linear programming (LP) solver. Since the
matrix of pairwise difference constraints is totally unimodular,
the solutions from the LP solver are guaranteed to be integers.

Under this novel and unified mathematical framework, we
can easily incorporate existing list-scheduling heuristics to
optimize the data-flow-intensive designs. In the meantime, the
aggressive instruction-level parallelism techniques from com-
piler domains such as code motions, speculations, and loop
pipelining can be naturally integrated to optimize the control-
intensive applications. Our scheduler can also be extended
support incremental scheduling and interactive scheduling.

B. Simultaneous Resource Binding

The resource allocation and binding process is performed
after scheduling. It determines the numbers of functional units
and registers, and the sharing among compatible operations
and data transfers. These optimization steps have a dramatic
impact on the final design quality as they determines the
interconnection network with wires and steering logic. It is
well recognized that the traditional techniques of minimizing a
single objective number, e.g., interconnection, functional unit,
or register count, cannot guarantee a satisfiable design quality.
More importantly, the impact of the same binding solution to
final design quality is different on different technologies. We
have to incorporate platform information tightly into the whole
exploration procedure.

Our resource binding algorithm in xPilot is based on a
solid performance and cost estimation model. Specifically,
we compute the optimization objectives using the realistic
platform-based measurements. The design cost could be design
area, power consumption, or their combination. Performance
mainly refers to clock frequency (or cycle time) in the scope
of resource binding as the overall latency is determined by
scheduling.

To explore the huge design space, we form, propagate and
prune synthesis solution points guided by the area and delay
estimation model. Eventually, we obtain a cost/performance

tradeoff curve, which provides a sound guidance for achieving
different design objectives.

V. EXPERIMENTAL RESULTS

The xPilot system is implemented based on a C++/Linux
environment. In this paper we report the results targeting the
Altera Stratix FPGA platform [6], using Quartus II v4.2 as the
downstream RTL synthesis and physical design tool.

A. Test Examples

We have tested xPilot through several real-life designs
which are from different application domains. These bench-
marks are listed in Table I and their characteristics are de-
scribed as follows:

• PR and MCM are twoDSP kernels with pure addi-
tions/subtractions and multiplications.

• CACHE is a cache controller implementation which is
a pure control-intensive design with cycle-accurate I/O
operations.

• MOTION performs the motion compensation algo-
rithm for the MPEG-1 decoder. This design has multiple
branches and a modest amount of computations.

• IDCT implements the inverse discrete cosine transform
algorithm used in the JPEG standard, andDWT imple-
ments the discrete wavelet transform algorithm adopted in
the JPEG2000 standard. These two benchmarks contain
a large amount of computations and memory accesses.

• EDGELOOP design is extracted from the H.264 de-
coder. It features a mix of computation, control branches,
loops and memory accesses.

TABLE I

C VS. RTL VHDL CODE SIZES

Design C lines VHDL lines LE Fmax(MHz)

PR 90 600 1349 178.7
MCM 161 1260 2402 152.6

CACHE 295 1277 371 161.6
MOTION 130 1200 888 161.2

IDCT 236 7388 9351 162.9
DWT 180 1371 1862 147.3

EDGELOOP 329 7296 7440 100.1

B. Advantage of Behavioral Synthesis: Code Size Reduction

In Table I the second and third columns report the compar-
ison on code sizes before and after behavioral synthesis for
the seven test cases. The area and frequency results reported
by Quartus II are also shown in the last two columns.

On average, the code size of the synthesized RTL designs
is about one order of magnitude larger than the corresponding
C code. If we assume design complexity is proportional to
the code line count, we can expect an over 10× reduction in
design effort by raising to the behavioral level and applying
our behavioral synthesis tool.

TABLE II

DESIGN TRADEOFF IN XPILOT

Target State Fmax Cycle Latency LE
Cycle time MHz (ns)

9ns 34 123.56 4830 39.1 1777
7ns 36 147.28 5211 35.4 1862

5.5ns 51 183.62 6926 37.8 1926

C. Advantage of Behavioral Synthesis: Design Tradeoffs

One of the advantages offered by behavioral synthesis tools
is their ability to explore design tradeoffs among several design
metrics, such as latency, area, and frequency. Currently, xPilot
accepts user-specified assignments of target frequency and
optimization preference (speed or area). Table II shows a set of
design points that xPilot generates for the DWT design. When
we decrease the target cycle time from9ns to 7ns to 5.5ns, as
expected, the resulting state numbers, execution cycle counts,
and LE counts increase accordingly. In this case, the optimal
latency appears on the second setting.

D. Comparison with SPARK

We further make comparisons withSPARK[7], a state-of-
the-art academic high-level synthesis system.

TABLE III

XPILOT SCHEDULING RESULTS COMPARED WITHSPARK

Benchmark
Spark xPilot Latency

#States LP #States LP Improvement
MPEG2-dpframe 32 424 53 375 11.6%

GIMP-tiler 27 2234 42 1977 11.5%
ADPCM-decoder 15 327 12 251 23.2%
ADPCM-encoder 16 133 14 122 8.3%

Average 13.6%

Table III shows a comparison of scheduling results on four
SPARK bechmarks. In this experiment a10ns target cycle time
is set for both xPilot and SPARK, and two-cycle multipliers
and five-cycle dividers are used. On average, xPilot is 13.6%
better in worst-case execution length (LP in the table).

Compared to SPARK’s binding results, xPilot is more than
2× better on average in terms of frequency with comparable
circuit area. The full consideration and detailed characteriza-
tion of the target platform partly contribute to the significant
improvement.

VI. XPILOT FOR SYSTEM-LEVEL SYNTHESIS

In this section we show that our xPilot system does not
limit itself to the scope of pure hardware behavioral synthesis.
In fact, xPilot can be adapted to accommodate both software
and hardware elements, and its second focus is to provide
efficiently platform-based system-level synthesis, especially
for Field Programmable System-on-a-chip (FPSoC) platforms.

The recently emerged Field Programmable System-on-a-
chip offers a promising platform for system-level design.
Several FPGA manufactures [6] [8] have announced their
FPSoC platforms which combines programmable fabric with
one or several processors. These processors could be either soft

xPilot

Behavioral Synthesis
Processor &
Architecture

Synthesis

SSDM

(System Synthesis
Data Model)

FPSoC

Interface
Synthesis

Analysis

Mapping

Profiling

Processor Cores
+ Executables

Drivers + Glue Logic
Custom Logic

xPilotxPilot front endfront end

SystemCSystemC/C/C Platform description Platform description
& Constraints& Constraints

Fig. 2. xPilot system-level synthesis framework.

processors (e.g., Nios/NiosII from Altera and MicroBlaze from
Xilinx) or hard core processors (e.g., PowerPC processors).
The soft core processors have the capability to extend the
base instruction set with a set of customized instructions.
These instructions are implemented by the programmable
fabrics as extra application specific function units in the data
path. These augmented function units are used to exploit the
instruction-level parallelism within the specific applications or
application domains. Programmable fabric can be also loosely
coupled with soft core processors as coprocessors. Users can
offload more complicated tasks to the coprocessors to boost
performance.

Figure 2 shows that the xPilot design flow as a complete
system-level synthesis system — from the system-level spec-
ification to hardware implementation on an FPSoC platform.
As mentioned in Section III, xPilot can handle system-level
specification languages such as C or SystemC. After front
end processing, the application specification is parsed into
our SSDM, which is a concurrent process network. SSDM is
able to accommodate both hardware and software components.
More importantly, it can explicitly describe the process-level
parallelism and inter-process communications. On top of this
powerful data model, various analysis, simulation and profiling
passes can be performed. We currently reply on the designers
to manually partition the application into software and hard-
ware based on the performance analysis.

Once the hardware/software partitioning is available, we
will invoke the xPilot behavioral synthesis engine to compile
the hardware portion of the design to the custom logics.
Since the original design specification is written in a C-based
language, it is relatively easy to generate the software code
for embedded processors. To integrate the micro-processors
and custom logics together, an interface synthesis is being
developed to generate the software drivers and glue logics.

During the software code generation step, we also generate
the application-specific instruction set for the extensible soft
core processors. This is a difficult task to be managed by
manual designs for large programs, and is further complicated
by various micro-architectural constraints, such as the clock
period, available chip area, etc. In our xPilot framework, a

template generation, matching, and covering algorithm has
been developed [9] to automatically identify and generate the
custom instructions. In template generation, we generate all
of the candidate instruction sets satisfying the architectural in-
put/output constraints. Then we select a subset of candidates to
maximize the potential speedup while satisfying the resource
constraint. Finally it maps the application to the extended
instruction set so that the total execution time is minimized.
Application of our techniques on Altera NIOS processor has
demonstrated an encouraging performance speedup (up to 3×
in total latency).

REFERENCES

[1] D. Nadamuni, “ES Level Design: the View in 2004,” June 2004,
Dataquest’s annual briefing.

[2] International Technology Roadmap for Semiconductors,
http://public.itrs.net, 2003.

[3] K. Wakabayashi, “C-Based Behavioral Synthesis and Verification Analy-
sis on Industrial Design Examples,” inProceedings of the Asian and South
Pacific Design Automation Conference, January 2004, pp. 344–348.

[4] SystemC Website, http://www.systemc.org.
[5] The LLVM Compiler Infrastructure, http://llvm.cs.uiuc.edu.
[6] Altera Website, http://www.altera.com.
[7] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau,SPARK: A Parallelizing

Approach to the High-Level Synthesis of Digital Circuits. Springer,
May 2004.

[8] Xilinx Website, http://www.xilinx.com. [Online]. Available:
http://www.xilinx.com

[9] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-Specific Instruction
Generation for Configurable Processor Architectures,” inProceedings of
the ACM International Symposium on Field-Programmable Gate Arrays,
2004, pp. 183–189.

