Performance-Driven Mapping for CPLD Architectures

Deming Chen, Jason Cong,

MiloS D. Ercegovac, and Zhijun Huang
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095

{demingc, cong, milos, zjhuang}@cs.ucla.edu

ABSTRACT

In this paper we present a performance-driven mapping al-
gorithm, PLAmap, for CPLD architectures which consist of
a large number of PLA-style logic cells. The primary goal
of our mapping algorithm is to minimize the depth of the
mapped circuit. Meanwhile, we have successfully reduced
the area of the mapped circuits by applying several heuristic
techniques, including threshold control of PLA fanouts and
product terms, slack-time relaxation, and PLA-packing. We
compare our PLAmap with a recently-published algorithm
TEMPLA [1] and a commercial tool, Altera’s MAX+PLUS
II [16]. Experimental results on various MCNC benchmarks
show that overall TEMPLA uses 8 to 11% less area at the
cost of 96 to 106% more mapping depth, and MAX+PLUS
IT uses 12% less area but 58% more delay compared with
our mapper.

Keywords

CPLD, FPGA, PLA-style logic cells, technology mapping,
delay optimization.

1. INTRODUCTION

Programmable Logic Devices (PLDs) have been widely
used for the implementation of digital circuits due to their
instant manufacturing turnaround, low start-up costs, and
ease of design changes. There are two major types of PLDs:
Field Programmable Gate Arrays (FPGAs) and Complex
Programmable Logic Devices (CPLDs). Most FPGAs have
logic cells based on look-up-tables (LUTs), and some have
multiplexer-based or gate-based logic cells. CPLDs are based
on PLA-style logic cells, which are also referred as p-term
blocks or simply PLAs. PLAs are considered to be coarse-
grained logic cells because they typically have a large num-
ber of inputs and outputs, and hence can realize a large
number of different logic functions. In contrast, FPGAs use
small programmable cells, usually LUT cells with 4 or 5
inputs, which can produce higher logic densities. Their suc-

Permissionto malke digital or hard copiesof all or part of this work for
personalbor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadwantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwisefo
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

FPGA 2001, Februaryl1-13,2001,Monterg, CA, USA.

Copyright 2001ACM 1-58113-341-3/00/0002$5.00

cess is further propelled by a great deal of algorithmic study
and tool development [5]. Although CPLDs provide only
medium density, they are faster than FPGAs because PLAs
are much larger than LUTSs, so the CPLD implementation
results in fewer levels of logic. The worst-case delay in-
curred by CPLDs also tends to be more predictable because
PLAs within a CPLD device communicate directly through
crossbar-like programmable interconnection structures.

Kouloheris and El Gamal [11] investigated the best granu-
larity for CPLDs and found that the area of the CPLD would
be the smallest if each PLA had 8 to 10 inputs, 3 to 4 out-
puts and 12 to 13 product terms. However, as we will see in
the latter part of this paper, commercially available CPLDs
use much larger PLAs as their logic blocks. Large PLA
blocks help CPLD devices to provide high speed and also
make the interconnection easier so that predictable timing
can be guaranteed. Nevertheless, large PLAs increase the
difficulties of logic synthesis and technology mapping due
to the NP-hard complexity of the two level minimization
problem. However, as more and more logic gates are being
integrated into one single chip and the drive for performance
requires high chip speed and low noise, PLA-style CPLD de-
vices show a promisingly bright future in the PLD industry.
Cong et al. [7] showed that PLDs based on single-output
PLA-like macrocells could outperform LUT-based FPGAs
in terms of both delay and area. Khatri et al. [10] explored
cross-talk immune VLSI design using a network of PLAs
embedded in a regular layout fabric. In their approach, the
logic netlist was implemented in the form of a network of
medium-sized PLAs. Regular layout for PLA logic and rout-
ing regions between PLA blocks was designed to be highly
cross-talk immune. The crosstalk immunity, high speed, low
area overhead and high predictability of their methodology
indicated that the PLA-network based VLSI architecture is
promising in the Deep Sub-Micron (DSM) era [10]. These
new trends towards CPLDs and the increasing complexity
of CPLD devices call for new effective and highly automated
CAD tools that achieve good performance, maximize logic
utilization, and continue to produce the ease-of-design and
fast time-to-market benefits [6].

In contrast to extensive studies on FPGA mapping al-
gorithms, limited work has been targeted for CPLD map-
ping technologies. There is almost no solid research done
from the perspective of performance optimization. Hasan et
al. [9] proposed a fast heuristic partition method for PLA-
based structures. Kouloheris presented DDMap [12] which
adapted a LUT-based technology mapper and set the num-
ber of LUT inputs to the number of PLA-style block in-

puts. Then, any node containing more product-terms than
allowable in the PLA was decomposed into smaller nodes.
Finally, the nodes are packed into multi-output PLA-style
blocks. Recently, Anderson and Brown [1] developed TEM-
PLA with the goal of minimizing the number of PLAs re-
quired to implement circuits on CPLDs. The algorithmic
flow of TEMPLA included three phases: optimal tree map-
ping, heuristic partial collapsing, and bin packing, which
was similar to that of the Chortle-crf technology mapper [8]
for LUT-based FPGAs. Another related work, k-m_flow [7],
was a technology mapper for single-output PLA-like macro-
cells.

In this paper, we present a performance-driven mapping
algorithm for CPLDs, called PLAmap. In the following sec-
tions, we will use p-term blocks and PLAs interchangeably.
Each PLA has the structure shown in Figure 1. A (k, m, p)-
PLA implies a PLA with k inputs, m product terms and
p outputs. The primary goal of our mapping algorithm is
to minimize the delay/depth of mapped circuits. We have
also successfully reduced the mapping area by applying sev-
eral heuristic techniques. For CPLD structures with a large
number of small PLAs such as (10,12,4)-PLAs, we com-
pared our approach with TEMPLA. To demonstrate that
our algorithm could also be applied to commercial CPLDs,
we modified our program to take into account structural
constraints of the p-term block in one commercial CPLD
device, Altera’s MAX 7000B [16]. Experimental results on
various MCNC benchmarks show that PLAmap can achieve
a much better delay with just small area overhead when
compared with both TEMPLA and Altera’s MAX+PLUS
II CAD tool.

AND Array OR Array

m Product-terms

ERtCat

k Inputs

X -- Programmable connection

® -- Connection mode

Sequential Part

Figure 1: (k, m,p)-PLA structure

The rest of the paper is organized as follows. Section 2
defines terminology and formulates the problem. Details of
the algorithm description are given in Section 3. Section 4
gives the experimental results. Conclusions and discussions
of future work are given in Section 5.

2. DEFINITIONS AND PROBLEM FORMU-
LATION

A Boolean network can be represented as a directed acyclic
graph (DAG) in which each node represents a logic gate, and
a directed edge (%, j) exists if the output of gate 7 is an input

of gate j. A primary input (PI) node has no incoming edge
and a primary output (PO) node has no outgoing edge. A
predecessor of node v is any node wu if there is a directed
path from u to v, and on the other hand, node v is a suc-
cessor of u. We use input(v) to denote the set of nodes that
supply inputs to node v. We assume the incoming network
for PLAmap is 2-bounded, that is, for each node v in the
network, |input(v)| < 2.

A cluster rooted at a node set R, denoted as CSTR, is
a subgraph of the Boolean network with the feature that
any path connecting two arbitrary nodes in CSTr lies en-
tirely in CSTr. output(CSTr) is also used to represent
root set R since these roots are also the outputs of clus-
ter CSTr. mode(CSTr) represents the set of nodes con-
tained in CSTr. input(CSTr) denotes the set of distinct
nodes outside of CSTr that supply inputs to the nodes in
node(CSTr). A subcluster, CSTt, of CSTR is a cluster that
is rooted at set T and is completely contained in CSTr.
CSTr is the supercluster of CSTr. If R contains only one
node v (i.e., |R| = 1), CSTRr represents a single-output net-
work rooted at node v. In this special case, CSTr can be
simply denoted as CST,. In general, CSTgr corresponds to
a multiple-output network.

A cluster CSTr can be optimized into a PLA as shown
in Figure 1. The number of product terms of the opti-
mized PLA is defined as the number of product terms of
CSTr, denoted as pterm(CSTr). A cluster CSTr is said
to be (k,m,p)-feasible if and only if [input(CSTr)| < k,
pterm(CSTr) < m and |output(CSTr)| < p are all satis-
fied. Otherwise, it is (k, m, p)-infeasible.

The level of a cluster CSTR, level(CSTR), is the maxi-
mum number of clusters that a path from a PI to nodes in
output(CSTr) needs to go through. All nodes in node(CSTr)
have the same level. Two factors determine the delay of a
CPLD circuit: delay in p-term blocks and delay in intercon-
nection paths. Because layout information is not available
at this mapping stage, we assume that each interconnec-
tion edge contributes a constant delay, which is reasonable
in CPLD structures. If each cluster in a network is trans-
formed into a PLA, we can then simply approximate the
circuit delay using a unit PLA-delay model. A unit PLA-
delay is defined as the delay of the AND-OR path in a PLA.
Each PLA along the longest path contributes one unit PLA-
delay towards the logic depth of the network.

The technology mapping problem for CPLDs is to cover a
given Boolean network with (k, m, p)-feasible clusters, which
then are converted to PLAs. Note that we do not require
these clusters to be disjoint since we allow network nodes to
be duplicated if necessary as long as the resulting network
is logically equivalent to the original. A mapping solution S
is a DAG where each node of the DAG is (k, m, p)-feasible,
and the edge (CSTr1,CSTr2) exists if v € output(CSTr1)
is in input(CSTr2). Our main objective is to compute a
mapping solution that minimizes circuit delay. Secondly,
we use several techniques to reduce the number of PLAs
needed as much as possible.

3. ALGORITHM DESCRIPTION

3.1 Overview

Our algorithm consists of three stages: first, label the
network from PIs to POs; second, map the labeled network
into (k,m,p)-PLAs from POs to Pls; third, pack PLAs to

further reduce the area. This algorithm flow is similar to
that of DAG-Map [2] for LUT-based FPGAs. We assume
that the input network has already been decomposed into a
2-bounded network. Actually, as long as each node in the in-
put network is (k, m, p)-feasible, the network can be handled
by PLAmap directly. We adhere to the 2-bounded network
because we want to stick with the same starting point for
every input network. In addition, smaller gates will be more
easily packed for area optimization [3].

3.2 Labeling Stage

Labeling stage determines each node’s level and provides
clustering information for the subsequent mapping step. To
minimize depth in the final PLA network, we label as if
the target structure only consists of (k, m,1)-PLAs so that
we can form a PLA cluster as deep as possible. In map-
ping stage, we will try to introduce new outputs from these
(k, m,1)-PLAs to generate (k, m,p)-PLAs (p > 1).

Both DAG-Map [2] and FlowMap [3] used labeling tech-
niques as their first step to generate depth information. Al-
though FlowMap offered an elegant polynomial time algo-
rithm to solve the depth optimization problem optimally
for LUT-based FPGA mapping, it was shown that the op-
timal mapping depth with product-term constraint could
no longer be derived from FlowMap because of the non-
monotone property of the minimum mapping depth at each
node [7]. We can also easily show that the clustering con-
straints for (k,m,p)-PLA based CPLD mapping are not
monotone. That is, that a cluster CSTRr is not (k,m,p)-
feasible does not imply that the superclusters of C'STr are
not (k, m, p)-feasible either. These non-monotone constraints
introduce a great difficulty in computing the optimal solu-
tions efficiently. Basically, we will develop heuristic algo-
rithms to tackle this NP-hard problem. To take advan-
tage of the success of FlowMap and DAG-Map for LUT-
based FPGA mapping, we modified the labeling procedures
defined in FlowMap and DAG-Map to serve our purpose.
We found that both of them produced comparable depth
and area results for our case. Because the labeling method
in DAG-Map was much simpler without losing efficiency,
a modified version of the DAG-Map labeling method was
adopted.

The DAG-Map labeling method is based on Lawler’s al-
gorithm [13]. We have extended it to consider the product-
term constraint. A label, label(v), is assigned to each node
v of the original network. The nodes are labeled in a topo-
logical order starting from the PIs. The topological ordering
guarantees that every node is processed after all of its pre-
decessors have been processed. Each PI node is assigned the
label 0. If node v is not a PI node, let ! be the maximum
label of all the fanin nodes of node v. The set of node v
and all its predecessors with label [form a tentative cluster
CST,. If CST, is (k, m,1)-feasible, the label of v is assigned
as [, i.e., label(v) = l; Otherwise, label(v) =1+ 1. After this
process, it is evident that for each node v with label [,, the
cluster CST, is (k,m,1)-feasible. node(CST,) consists of
the root v and all its predecessors with label /,. Label [,
will be the level (logic depth) of all the nodes in CST, in
the labeled network.

When the labeling step is finished, the delay information
will be updated. The label of each node in a cluster rep-
resents the arrival time (AT) of the output signal of that
node in the corresponding PLA under the unit PLA-delay

model. The required time (RT) of the final mapping so-
lution is assumed to be the maximum AT in the network,
which is the logic depth of the final mapped network. Slack
time (ST) of a node is defined as the difference between RT
and AT. When we trace clusters in the network from POs
to PIs, we can calculate RT and ST for each node. The
slack-time information can be used in the mapping stage
for area optimization. A network example after the labeling
stage is shown in Figure 2, which has nine single-output
clusters. The final target structure is (3,3,2)-PLA based
CPLD. Each gate in Figure 2 belongs to some clusters and
has been marked with label/RT representing its label and
required-time.

Figure 2: Boolean network after labeling

Note that when we generate a (k,m,1)-feasible cluster
CST,, in order to minimize the label at each node, we ig-
nore the fanouts of the internal nodes that go out of CST,.
We call these fanouts out-of-cluster fanouts of CST,. In Fig-
ure 2, for example, the out-of-cluster fanout to G4 of internal
node G1 is ignored when we label and cluster CSTgs. It is
possible that as C'ST, becomes larger and larger, there will
be many internal nodes of node(CST,) with out-of-cluster
fanouts. We can predict that a large percentage of those
fanouts will incur node duplications later because of the
PLA output constraint. The side effect will be a larger map-
ping area. We have developed a threshold control procedure
to reduce this side effect, which will be covered in detail in
the area/delay tradeoff section, Section 3.5.

3.3 Mapping Stage

The second stage of our algorithm is to generate (k, m, p)-
PLAs based on the label information of each node in the net-
work. Since the logic depth of the final network has already
been decided, the goal of the mapping stage is to minimize
area without affecting the logic depth of the network.

The mapping process moves from POs to PIs. A map-
ping list M records and updates the nodes to be considered
throughout the process. Initially, all of the PO nodes are
put into M and more nodes (as inputs of mapped clusters)
are added in along the way.

Prior to mapping each node in M starting from the begin-
ning, M is sorted in label-decreasing, slack-time-increasing
order so that nodes on critical paths (with slack time 0) tend
to be considered first, and the neighborhood non-critical
nodes have more opportunities to take advantage of slack
time relaxation. For the network in Figure 2, the mapping

sequence is: G10, G7,G9,G6,G2,G5,G3,G8,G4. For each
node v in M, there will be two possible situations: v is an
uncovered node, or v has already been covered. We will
explain these two situations in more details below.

3.3.1 Casel: v isan uncovered node

First, if v is an uncovered node with label l,, a single-
output cluster C'ST, is formed to include v and all its pre-
decessors with label [,. Therefore, any nodes in node(CST,)
have the label I, while any nodes in input(CST,) have the
labels smaller than /,. From the labeling step, it is evident
that CST, is a (k,m,1)-feasible cluster. It is possible that
some nodes in C'ST, have already been covered when other
PLAs were formed during the mapping process. In Figure 2,
when we are mapping G4, CSTg4 is formed to cover both G4
and G1. However, G1 has already been covered by CSTgs.
Three approaches are considered for the mapping of CSTga
in the example.

(A) Shared-node cluster merge. Since CSTg4 and
CSTgs share one node, it is highly possible that they can
also share some common product terms if they are merged
together. So we will first merge these two clusters into one
multiple-output cluster CSTgags and check if the merged
cluster is still (k, m, p)-feasible. If the answer is yes, CSTg4
will no longer exist and C'STgs will be replaced by CSTgags.-
In this example, CSTg4 and CSTgs can not be merged to-
gether because inputs of the merged cluster will exceed 3.

(B) Slack-time (ST) relaxation. If approach (A) fails,
ST relaxation is the next approach to try. This approach
attempts to form a reduced cluster RCSTc4 as a separate
new PLA. RCSTg4 is the subcluster of CSTg4 that excludes
any shared nodes with other clusters. In our case, RCSTga
only contains one node, G4. Because RCSTg4 is smaller
than CSTg4, it may be further packed with other clusters
later. However, several strict criteria need to be verified.
Due to the non-monotone property of the PLA constraints,
the (k, m, 1) feasibility of RC STg4 itself needs to be checked
first. Furthermore, we have to determine if additional out-
put can be brought out from CSTgs to provide input to
RCSTgs. Since CSTgs and RCSTgs originally have the
same label, the above new output addition will make the la-
bel of RCSTg4 increase by 1. The label change of RCSTg4
also affects the labels and STs of its successors and the RTs
and STs of its predecessors. Since we plan to keep the over-
all network depth unchanged in the mapping stage, the label
increase of RC'ST¢4 is allowed only when there is no ST vi-
olation (i.e., new ST's of affected nodes are still > 0). Hence,
delay information needs to be updated. Also, we have to en-
sure that no extra (k, m, p)-infeasible clusters are generated
as a side effect. In our example, RC'STg4 can be formed as
a small PLA since G4 has a slack-time of 1 and CSTgs can
provide an extra output G1.

The idea of ST relaxation has been demonstrated as a
good area reduction technique in LUT-based FPGA map-
ping [4]. In our case, the ST relaxation is much more com-
plicated and it can produce 6 to 10% area reduction.

(C) Node duplication. If approach (B) fails, we then
have to duplicate those shared nodes of CST¢4 and CSTgs,
i.e., G1. A new PLA for CSTg4 is then created including
G4 and the duplicated node G1x. CSTgs can be treated as
intact except for some fanout updates. This last approach
represents the worst case.

After the above mapping operation, node v and its orig-

inally uncovered predecessors with label(v) will be either
covered by a newly formed cluster rooted at v as in ap-
proaches (B) and (C) or covered by a merged cluster as in
approach (A). At this point, an optional operation called
sibling-merge can be applied. Sibling-merge tries to merge
the newly formed cluster with another mapped cluster of the
same depth and with the maximum number of shared inputs.
It can be treated as a local area optimization step that min-
gles with the mapping stage. Since our overall algorithm
includes a global packing step after mapping, the flow with
sibling-merge doesn’t always generate better results com-
pared to the flow without sibling-merge. Although sibling-
merge can eliminate one PLA by merging it into another
PLA, the resulting larger PLA may not have any chance to
be further packed with other PLAs later.

3.3.2 Case?2: visacovered node

Secondly, v is a covered node in some mapped PLA but is
not a root node of that PLA. An example is shown in Fig-
ure 3(a). G1 is in input(CSTg2). When CSTg: is mapped,
the non-PI input G1 is put into the mapping list M. Later,
when CSTgs is mapped, node G1 is covered by CSTgs.
However, G1 is still in the mapping list M.

(a) G1 is a covered internal node
(b) G1 is duplicated if PLA output introduction fails

Figure 3: Example of case 2

At this point, we will first try to introduce G1 as a new
output of CSTgs as long as the resulting CSTgsg:1 is still
(k, m, p)-feasible. Unlike the label increasing situation in the
uncovered case, no label update is necessary here because
the label of G1 is surely smaller than the label of CSTgo.
If CSTgsc1 is not (k,m,p)-feasible, another worst case is
encountered: a subcluster rooted at G1 needs to be dupli-
cated and becomes a new PLA with the duplicated nodes.
A duplication example is shown in Figure 3(b).

3.4 PLA Packing Stage

To further reduce mapping area, two packing algorithms
are developed. They also reduce the number of PLAs with-
out depth sacrifice.

The first operation is PLA collapsing, which is similar to
greedy-pack operation in DAG-Map and the partial collaps-
ing concept in TEMPLA. Any PLA that can be collapsed
into all of its fanout PLAs (different outputs of the PLA
may go into different successive PLAs) can be eliminated,
provided that all PLAs remain feasible after the collapsing.
This introduces another optimization problem since collaps-
ing some PLAs into their fanout PLAs may preclude the
possibility of collapsing other PLAs into their fanout PLAs.

Based on the empirical results in TEMPLA, our collaps-
ing operation prefers to collapse smaller PLAs. The size of
a PLA is defined as the product of the number of inputs,
num_in and the number of product terms, num_pterm (i.e.,
num_in * num_pterm). Experiments show that only single-
output single-fanout PLA collapsing can help in reducing
area by 5 to 7%. The cost of collapsing multiple-fanout
PLAs would overturn the benefits.

The second operation is maximum shared-input bin pack-
ing. For each PLA, a list of buckets is built based on the
number of shared inputs with other PLAs. Bucket m(m >
0) contains all PLA clusters that share m inputs with the
PLA. In each bucket, the PLAs are sorted in descending or-
der according to their size, which has the same definition as
in the PLA collapsing operation. Next, each bucket is tra-
versed from the maximum shared-input bucket to the least
shared-input one. And for every bucket, we try to pack the
PLAs starting from the largest size down. The general ob-
servation is that the larger input number a PLA shares with
another PLA| the higher the possibility they can be packed.
Also, the larger size a PLA has, the better packing capacity
it produces after packing with another PLA.

The final mapping solution for our example is a PLA net-
work consisting of only five clusters in Figure 4. Figure 5
shows a structural view of the mapped results with (3, 3, 2)-
PLAs. The merging of CSTge with CSTg7, and CSTa2
with CSTgs, is accomplished by sibling-merge. CSTg9 and
CSTg1o are put into one cluster by the PLA-collapsing oper-
ation. RCSTg4 and CSTgs are packed by maximum shared-
input merge. From Figure 5, we see that different outputs
of one PLA can have different labels or levels. However, we
can verify that the packing step will not increase the total
depth of the network.?

Figure 4: Network after mapping and packing

Among the three stages of PLAmap, the labeling stage
determines the network depth. The other two stages target
reducing area without changing overall depth. In next sec-
tion, we will discuss two ways to control area/delay tradeoff.

3.5 Area/DelayTradeoff

Area/delay tradeoff implies that some depth can be sacri-
ficed to achieve better area. In the case of pursuing area re-
duction for small PLA-based structures, we used a threshold

!The AND-OR levels between each individual PI and PO
remain the same before and after the packing operation.

ag bcd e f

Figure 5: Final PLA network

control value p over the number of allowable out-of-cluster
fanouts during labeling stage. Along the labeling process,
when CST, is growing larger, it starts to contain some in-
ternal nodes (other than v) with out-of-cluster fanouts. Let
us denote the set of these nodes as F. When the size of
F, |F|, exceeds a threshold value H, we will stop the la-
beling process for CST, even before it actually reaches the
(k, m, 1)-infeasible point. H is calculated as H = p/p, where
p is the output number of (k,m,p)-PLA. When |F| > H,
CST, will stop growing and be counted as a single-output
PLA. The larger pis, the smaller H will be, so the higher the
restrictions applied to the cluster formulation. Experiment
results on the effects of different p are shown in Table 1.
From the table, we can see that for (k, m,4)-PLAs p of 0.5
provides the best area reduction but with larger depth sacri-
fice. We have used 0.33 as our default threshold value; that
is, H =4/0.33 = 12. So |F| can not exceed 12 for this case.

P Average % | Average %
decrease in | increase in
of PLAs depth
0.15 8.1 10.9
0.2 14.1 13.0
0.25 15.5 15.2
0.33 18.7 26.1
0.5 26.7 32.6
0.67 19.8 50.0
1.0 19.4 71.7

Table 1: Effect of different threshold control val-
ues for (k,m,4)-PLAs compared to non-threshold-
control case

When the circuits are large, threshold-controlled PLAs
lead to significantly less duplication in the mapping step. In
addition, when the PLAs are restricted to be smaller in the
labeling stage, they are more capable of being packed with
other PLAs in the PLA packing stage.

When the target is for CPLDs that are based on large
PLAs, such as (33,80,16)-PLAs or (36,80,16)-PLAs, our ex-
periments reveal that the number of total product terms is
playing a more crucial role. Therefore, we used a differ-
ent threshold parameter, number of product terms allowed
for each PLA output, denoted as P;. When the number

of product terms for output v in CST, reaches the thresh-
old value P;, C'ST, stops growing during the labeling stage
and is set as a single-output PLA. We carried out some em-
pirical studies with general (36,80, 16)-PLAs without any
structural constraints.”> The results are shown in Table 2.
We can see that when P; = 20, we have the best tradeoff for
area and delay in this general case. Since clusters are rather
small after labeling, the sibling-merge step is quite effective
and the maximum shared-input bin packing also offers good
reduction for area.

P, || Average % | Average %
decrease in | increase in
of PLAs depth

5 36.9 131.8

10 38.2 59.1

15 39.6 50.0

20 36.4 22.7

25 36.0 22.7

30 31.6 18.2

Table 2: Effect of different threshold values for gen-
eral (36,80, 16)-PLA structure compared to the non-
threshold-control case

3.6 Extensionto Commercial CPLDs

Several major CPLD families currently exist on the mar-
ket. Altera’s high-speed, high-density MAX families are
based on Multiple Array MatriX (MAX) architecture [16].
Lattice’s MACH 5 CPLD architecture consists of PAL blocks
that allow the implementation of large equations (up to 32
product terms) with only one pass through the logic ar-

ray [19]. Cypress recently released their high density Delta39K

devices which is fast enough to implement a fully synthe-
sizable 64-bit, 66-Mhz PCI core [18]. Other major CPLD
vendors include XILINX and Atmel.

In this research, we will examine one type of CPLD, Al-
tera’s MAX 7000B, which is considered the best or the most
sophisticated of the MAX families. The EEPROM based
MAX 7000B family provides 6,000-10,000 usable gates, 36-
212 1/0 pins, and up to 32 Logic Array Blocks (LABs). Each
LAB contains a group of 16 macrocells. Figure 6 shows the
structure of the macrocell and its local array. Each LAB is
fed by 36 input signals from the interconnect array. All of
these signals are available within the LAB in their true and
inverted form.

As shown in Figure 6, each macrocell can be supple-
mented with both shareable expander product terms and
high-speed parallel expander product terms to provide up to
32 product terms per macrocell. Shareable expanders can be
viewed as a pool of uncommitted single product terms (one
from each macrocell in the LAB) that feed back into the
LAB logic array and can be shared by any or all macrocells
in the LAB. Parallel expanders are unused product terms

2That means, during the formulation of C'ST,, the output
v can use up all the eighty product terms without being
concerned if it is practical or not. Besides, it does not need
to worry about other structural constraints as described in
Section 3.6. This case is actually used as the non-threshold-
control base-case to evaluate the effects of different threshold
values.

that can be allocated to a neighboring macrocell to imple-
ment faster complex functions. Parallel expanders allow up
to 20 product terms to directly feed a macrocell OR logic,
with five default product terms provided by the macrocell
and three sets of up to five parallel expanders per set pro-
vided by neighboring macrocells in the LAB. The lending
and borrowing of parallel expanders have to follow some
architecture constraints. Both shareable and parallel ex-
panders incur an extra small delay. The whole LAB can
be treated as a special (36,80,16)-PLA with structural con-
straints.

Multiple LABs are linked together via the Programmable
Interconnect Array (PIA). This global bus is a programmable
path that connects any signal source to any destination
throughout the entire device. The PIA makes a design’s
timing performance easy to predict.

LAB Local Array Global Clear/Clocks

3 Parallel

| Expanders
i (from other Fast Register
il Macrocells) Input Select ~ Bypass

Product | - bj j
Term

Select
Matrix

To IO
Control
Block

DIT Q

Sequential
Part

N
Control Signals

36 Signals 16 Expander From 1/0 pin To PIA
from PIA Product Terms

Figure 6: MAX 7000B macrocell and local array

We will briefly explain the algorithm changes to fit Al-
tera’s LAB specification.

Labeling Stage. As mentioned in Section 3.5, number
of product terms P; for PLA output is used as an effective
way to achieve area/delay tradeoff for large PLAs. Using
the empirical results of the general (36,80,16)-PLAs as a
guideline, we find that the maximum twenty product terms
per output also performs the best when we are targeting
for Altera’s CPLDs. By setting P; = 20, we also limit the
amount of shareable expanders used because all the twenty
product terms can be realized without the involvement of
shareable expanders, and as a result, the mapping solution
is further directed towards faster speed.®

Mapping and Packing Stage. The mapping and pack-
ing algorithm is modified to adapt Altera’s LAB structure.
It is outlined as follows:

Collapse each newly formed cluster into an one-level net-
work, in which each node represents a function of sum of
product terms (p-terms). Each node belongs to the root set
R, and is an output of the cluster.

Find the number of p-terms of each output 7 (a potential
macrocell) and put it in an array P.

If P[i] > P, the output can not be a macrocell, so the
whole cluster is rejected.

Otherwise, sort P in descending order; for each P[i] start-
ing from the beginning, calculate N = P[i]/5. If (P[] mod
5) > 0, N %5 is the number of the parallel expanders that

3Parallel expanders incur much less delay than shareable
expanders [16].

the corresponding output needs to borrow from its neigh-
borhood; deduct N off the available outputs of the cluster.
If (P[i] mod 5) = 0, deduct N — 1 off the available outputs
of the cluster.

If there are leftover p-terms, i.e., (P[] mod 5) > 0, an
additional constraint is applied.?

If the output constraint can be satisfied, the cluster can be
converted into a LAB of MAX 7000B; otherwise, the cluster
is rejected.

4. EXPERIMENTAL RESULTS
4.1 Experimental Settings

Our program has been implemented in C language within
the SIS [15] framework so we can easily access existing net-
work manipulation procedures and the ESPRESSO mini-
mizer.

We first compared PLAmap with TEMPLA for (10, 12, 4)-
PLAs and (12,12,4)-PLAs. Next, with the modified algo-
rithm, we compared the mapping solution of PLAmap with
that from Altera’s MAX+PLUS II (or MPII) tool.

4.2 Comparisonwith TEMPLA

TEMPLA is also based on the SIS framework and relies on
the I/O routines and ESPRESSO minimizer. The published
results of TEMPLA were based on 8_bounded circuits. To
have a fair comparison, we decided to run both PLAmap and
TEMPLA on 2_bounded circuits. We decomposed some of
TEMPLA’s published circuits into 2_bounded ones and ran
TEMPLA with them. The results on mapping area were
actually 8.5% better compared with the original published
results of TEMPLA. So TEMPLA actually would gain an
advantage in its results in this experimental setting.

A (10,12,4)-PLA structure was used in TEMPLA and
hence was introduced in our experiment. Also, since the
number of PLA inputs is showing a major influence upon
the mapping for small PLAs, (12,12, 4) structure is also used
for the experiment.

Fifteen benchmarks are shown in Table 3. All the jobs are
run on a SUN Ultra 10 machine. Circuits with ‘*’ are the
original circuits used by TEMPLA and decomposed by us
into 2_bounded networks. Area is the number of PLAs and
depth is decided based on the unit PLA-delay model. The
comparison shows that TEMPLA produces 8 to 11% less
area but about two times as much delay as PLAmap. More-
over, TEMPLA consumes a huge running time, especially in
the case of (12,12, 4) structure.

4.3 Comparisonwith Altera

We carry out our experiments in version 9.6 of MPII. All
results are run using the EPM7512BFC256-6 device, which
has 32 LABs and a total of 512 macrocells.

The results of PLAmap are obtained as follows. First,
circuits are run through PLAmap to generate mapping so-
lutions. Then, each node of the resulting network is specified
as a LCELL(logic cell), which is basically a macrocell in a
MAX 7000B device. LCELLs in the same PLA are grouped
by using a CLIQUE, which will be treated by MPII as a
single unit to be fit into the same LAB if possible. The logic

4For example, if two p-terms are loaned out, then three p-
terms are left for the lending macrocell to use by itself. If
that macrocell’s function can be implemented using three
p-terms, the macrocell will still be able to output a logic
function. Otherwise, those three p-terms are wasted.

equation of each LCELL is provided in the tdf file (Text De-
sign File), and the CLIQUE information is stored in an acf
file (Assignment and Configuration File). The tdf is used as
input to Altera’s MPII in a WYSIWYG style (What You
See Is What You Get). This style directs MPII’s logic syn-
thesizer to change the logic of the circuit as little as possible
during compilation by turning off many of the logic synthe-
sis options. By such, our mapping information is preserved.
Area is represented by the number of LABs used, and delay
is represented as the delay of the longest path.

The results of Altera are obtained by running the un-
mapped circuits with different synthesis options of MPII to
achieve the best results for Altera. Area and delay are cal-
culated by the same criteria as PLAmap. We have tested
three sets of benchmarks:

BSet_1. 24 original MCNC benchmarks without any opti-
mization.

BSet_2. use BSet_1 as initial benchmarks and optimize
them by SIS.

BSet_3. use BSet_2 as initial benchmarks and decompose
them into 2_bounded circuits by dmig.

For synthesis options, we have tried the following three
different styles:

Fast. “Fast” global synthesis style, multi-level synthesis for
MAX 7000, optimization for speed (index 10), full minimiza-
tion, and parallel expanders.

Normal. “Normal” global synthesis style, multi-level syn-
thesis for MAX 7000, optimization for speed (index 10), full
minimization, and parallel expanders.

NoMLS. “Normal” global synthesis style, no multi-level
synthesis for MAX 7000, optimization for speed (index 10),
full minimization, and parallel expanders.

Among all the situations, MPII produces the best delay on
average for Altera using BSet_3 with NoMLS style. Turn-
ing off multi-level synthesis guarantees that MPII’s synthe-
sizer won’t reduce the area by increasing the mapping level.
However, as a result, 30% of the circuits can no longer fit
into the device. For those unfitting circuits, we then use
BSet_3 with Normal style as the second best choice for
Altera to fill up the rows. The comparison is shown in Ta-
ble 4. The first 12 circuits are sequential and the second 12
are combinational. For each type of circuits, we choose half
of them with gate level less than 15 and half of them larger
or equal to 15. The circuits with ‘*’ are unfitting circuits
during the first try for Altera.

We can see that Altera generates solutions of 12% less
area and 58% more delay than PLAmap. Altera performs
better when the gate level is small. Among the circuits with
similar levels, circuits with smaller sizes also help Altera
to bring about better results. Altera outperforms PLAmap
more often when dealing with sequential circuits (4 out of
12).

The MC Level (macrocell level) columns indicate how
many steps or levels a signal goes through in the floorplan
from an input pin to an output pin on the critical path. The
floorplan information is available after placement and rout-
ing. We can describe each such step as one edge connecting
two points along the path.

In our mapping solution, it rarely happens that an output

10-12-4 PLAs 12-12-4 PLAs
PLAmap TEMPLA PLAmap TEMPLA
benchmarks || area/depth | runtime area/depth | runtime | area/depth | runtime area/depth | runtime
alud 179/4 92.9 203/8 4787.5 102/4 90.7 166/8 30584.0
dalu 108/3 35.2 65/9 205.4 86/6 45.3 54/10 585.7
exbp 67/2 673.9 193/11 170.6 64/2 630.3 171/9 4735
misex3 336/4 322.2 286/8 2860.0 192/3 275.9 229/8 16690.2
C5315 161/5 75.0 94/11 56.0 152/5 146.1 88/11 64.0
C7552 169/7 125.8 131/11 196.8 170/7 205.7 130/11 674.6
des 316/5 227.8 248/8 294.5 258/4 406.4 199/7 656.5
i10 208/8 85.2 165/20 87.8 196/8 114.2 141/18 136.0
i8 103/4 62.2 94/5 47.5 90/4 312.0 82/5 60.8
pair 130/4 45.8 102/9 91.5 117/4 58.3 89/8 180.2
cordic* 11/3 4.8 9/4 46.1 11/3 6.3 7/5 242.6
e64* 68/3 16.3 55/5 44 60/2 13.3 48/4 3.8
pdc* 504/7 527.2 501/12 1390.4 415/6 580.6 401/11 5773.9
spla* 554/5 664.63 478/12 1556.2 446/6 691.9 399/12 7103.3
table3* 114/5 40.5 82/9 47.2 106/5 169.8 67/8 132.8
Total 3028/69 2999.43 2706/142 11841.9 2465/69 3796.8 2271/135 63361.9
Comparison 1/1 1 -10.6%/+105.8% | +294.8% 1/1 1 -7.9%/+95.7% | +1568.8%

Table 3: Area/depth comparison of PLAmap and TEMPLA.

of a PLA is also an input of the same PLA. Also, since we
are following topological order during labeling, the label of a
node will never exceed the label of its successors. This guar-
antees that a path generally starts from the input pin, goes
through several levels of different LABs and then reaches
the output pin. MAX 7000B’s maximum logic array delay
for a signal to go through a macrocell is 1.7ns (tzLap) [17].
A signal from an input pin to a PIA interconnect is 0.6ns
(tzn). The delay incurred by a signal that travels through
PIA is about 2.4ns (tpra). Based on these and other timing
parameters [17], we can derive that an edge delay between
two different non-registered macrocell outputs from different
LABs is about 4.6ns (we denote it as t1); ° and the delay be-
tween a macrocell output and an output pin is about 0.8ns
(t2). Assume that on average each macrocell borrows two
sets of parallel expanders (each set contains 5 expanders),
the extra delay incurred is 2 * 0.3 = 0.6ns (¢3). As an exam-
ple, the critical path of circuit alu4 under PLAmap starts
from input k; goes through four LABs: Y, R, AE, and S;
then reaches output r. The total delay can be calculated
as tiy + (t1 +¢3) * 4 + ¢t2. The result is 0.6 + 5.2 * 4 4+
0.8 = 22.2ns, which is close to the result shown in Table 4
(23.7ns). This experiment shows one of the CPLD features,
i.e., predictable timing.

5. CONCLUSIONS AND FUTURE WORK

We have presented a new performance-driven mapping al-
gorithm, PLAmap, for CPLD structures. Our algorithm
breaks the technology mapping process into three stages:
labeling, mapping and packing. Our primary goal is to min-
imize the delay of mapped circuits. Meanwhile, we have
successfully reduced the area by applying several techniques
including threshold control, slack-time relaxation and PLA-
packing. For CPLD structures with a large number of small
PLAs such as (10, 12, 4)-PLAs, we compared our results with
a recently-published technique TEMPLA. The comparison
shows that TEMPLA wuses 8 to 11% less area but about

5Delay between registered macrocell outputs is about 2ns
more than ¢1.

96 to 106% more depth than PLAmap. TEMPLA also con-
sumes huge run-time. Commercial CPLDs are usually based
on large PLAs such as (36, 80, 16)-PLAs with special struc-
tural constraints. To demonstrate that our algorithm can
also be applied to commercial CPLDs, we modified our pro-
gram to take into account structural constraints in Altera’s
MAX 7000B CPLD structure. Experimental results show
that Altera’s MAX+PLUS II uses 12% less area but 58%
more delay compared to PLAmap.

One direction of future work is to try other area/delay
tradeoff techniques so the tradeoff can be more controlled
and provide various solutions to meet different mapping re-
quirements. We also plan to apply PLAmap to other com-
mercial synthesis tools from major EDA companies such as
XILINX, Cypress, and Lattice. Extension of PLAmap for
arithmetic circuits is also under consideration.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge Jason Anderson for
providing helpful discussions and the whole TEMPLA ex-
periment environment. We thank Grachelle Garcia at Al-
tera for helping us understand the specific structural con-
straints in the MAX 7000 and MAX 9000 CPLD families.
Thanks also to David Mendel at Altera, Maureen Smerdon
at Lattice, and Michel Campmas and Kuyler Neable at Cy-
press for kindly providing their software tools. Finally, we
would like to thank Dr. Songjie Xu and Dr. Chang Wu at
Aplus Design Technologies, Inc., and Dr. Wangning Long
at UCLA for their helpful discussions. This research is sup-
ported in part by Altera Corp. and Lattice Semiconductor
Corp. under the California MICRO program and the NSF
Grants MIP-9725771 and MIP-9357582.

7. REFERENCES

[1] J.H. Anderson and S.D. Brown, “Technology Mapping
for Large Complex PLDs”, Proc. 35th ACM/IEEE De-
sign Automation Conference, 1998, pp.698-703.

[2] K.C. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar,
“DAG-Map: Graph-Based FPGA Technology Mapping

Circuit Information PLAmap Altera
for BSet_3 BSet_3 NoMLS & Normal/BSet_3
Bench- Gate | Input/ | Gate | Latch | LAB | MC | Delay | LAB MC Delay
marks No. | Output | Level | No. No. | Level | (ns) No. Level (ns)
planet 467 7/19 14 6 9 3 15.3 6 2 10.9
51423 502 17/5 46 74 26 4 21.6 23 4 26.7
51488 578 8/19 12 6 7 3 14.5 5 2 10.8
51494 585 8/19 12 6 6 2 10.8 5 2 10.8
§9234* 933 36/37 21 135 15 3 14.5 31 4 25.8
sbc 695 40/56 11 27 18 3 15.8 15 2 12.6
scf 673 27/54 12 7 22 3 16.1 10 2 11
tbk* 682 6/3 13 5 10 4 19.4 5 5 24.6
51238 526 14/14 16 18 11 3 15.5 8 4 21.4
51196 492 14/14 19 18 10 3 15.2 8 4 22
$838* 261 34/1 26 32 9 3 15.4 10 13 61.6
minmax10 376 13/10 53 30 16 7 35.2 16 12 63.8
ex5p 1544 8/63 13 0 11 2 12.4 10 1 7.2
alud*® 624 14/8 29 0 16 4 23.7 11 10 49.5
t481% 580 16/1 15 0 8 3 16.7 2 4 20.6
x4 302 94/71 8 0 14 1 8.1 14 1 8.1
C3540 1017 50/22 40 0 24 6 34.3 28 11 63.6
C1355* 494 41/32 21 0 10 3 17.1 8 4 22.7
vda 445 17/38 10 0 10 2 12.3 10 2 12.4
k2 789 45/43 15 0 19 2 12.9 21 3 17.9
apex4* 2316 9/18 13 0 25 2 13.8 16 14 68.2
duke2 418 22/29 11 0 5 2 11.3 5 1 7.3
C880 357 60/26 24 0 13 3 17.6 8 7 38
tableb 917 17/15 13 0 10 2 12.3 11 3 16.5
Total - - - - 324 | 73 | 401.8 | 286 117 634
Comparison - - - 1 1 1 -11.7% | +60.3% +57.8%

Table 4: Area/delay comparison of PLAmap and Altera’s MAX+PLUS II. Altera’s results are obtained with
NoMLS style if possible. Circuits with ‘*’ indicate that they are rerun with Normal style.

for Delay Optimization”, IEEE Design and Test of Com-
puters, Sept. 1992, pp.7-20.

J. Cong and Y. Ding, “FlowMap: An Optimal Tech-
nology Mapping Algorithm for Delay Optimization in
Lookup-Table Based FPGA Designs”, IEEE Trans. on
Computer-Aided Design, Jan. 1994, Vol. 13, No. 1, pp.1-
12.

J. Cong and Y. Ding, “On Area/Depth Trade-off in
LUT-based FPGA Technology Mapping”, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
vol.2, (no.2), June 1994. pp.137-148.

J. Cong and Y. Ding, “Combinational Logic Synthesis
for LUT Based Field Programmable Gate Arrays”, ACM
Trans. on Design Automation of Electronic Systems, Vol.
1, No. 2, April 1996, pp.145-204.

J. Cong and S. Xu, “Synthesis Challenges for Next-
Generation High-Performance and High-Density PLDs”,
Asia and South Pacific Design Automation Conference,
Yokohama, Japan, Jan. 2000, pp. 157-162.

J. Cong, H. Huang and X. Yuan, “Technology mapping
for k/m-macrocell Based FPGAs”, Proc. ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, San Jose, CA., Feb. 2000, pp. 51-59.

R.J. Francis, J. Rose and Z. Vranesic, “Chortle-crf: Fast
Technology Mapping for Lookup Table-based FPGAs”,
Proc. 28th ACM/IEEE Design Automation Conference,
1991, pp.227-233.

Z. Hasan, D. Harrison and M. Ciesielski, “A fast Parti-
tion Method for PLA-based FPGAs”, IEEE Design and
Test of Computers, Dec. 1992, pp.34-39.

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10] S.P. Khatri, R.K. Brayton, A. Sangiovanni-Vincentelli,
“Cross-talk Immune VLSI Design Using a Network
of PLAs Embedded in A Regular Layout Fabric”,
IEEE/ACM International Conference on Computer
Aided Design, Nov. 2000, pp.412-418.

[11] J.L. Kouloheris and A. El Gamal, “FPGA Performance
vs. Cell granularity”, Proc. Custom Integrated Circuits
Conference, 1991, pp.621-624.

[12] J.L. Kouloheris, “Empirical Study of the Effect of Cell
Granularity on FPGA Density and Performance”, PhD
thesis, Stanford University, 1993.

[13] E.L. Lawler, K.N. Levitt, and J. Turner, “Module Clus-
tering to Minimize Delay in Digital Networks”, IEEE
Trans. on Computers, Vol. C18(1), Jan. 1969, pp.47-57.

[14] G.D. Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill Inc., Toronto, 1994.

[15] Ellen Sentovich, et.al., “SIS: A System for Sequential
Circuit Synthesis”, Electronics Research Lab., Memo.
No. UCB/ERL M92/41, 1992.

[16] MAX 7000B, Programmable Logic Device Family, the
Altera Data Book, Altera Corporation, February 2000.

[17] Understanding MAX 7000 Timing, Application Note
94, Altera Corporation, May 1999.

[18] The Cypress Data Book, Cypress Semiconductor Cor-
poration, Aug. 2000.

[19] The Lattice Data Book, Lattice Semiconductor Corpo-
ration, July 2000.

