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1. INTRODUCTION

With the exponential growth of the performance and capacity of integrated
circuits, power consumption has become one of the most critical constraining
factors in the IC design flow [ITRS 2003]. Excessive power consumption lim-
its the degree of transistor integration on a single chip, requires expensive
packaging and cooling systems, shortens battery lifetime for portable devices,
and brings on problems of signal integrity. In his keynote speech at DAC’04,
Intel CTO Patrick Gelsinger mentioned that delivering performance in power
envelop was one of the biggest technology challenges in the future [Gelsinger
2004]. Rigorous low-power design will require power optimization through the
entire design flow to achieve maximal power reduction.

There are two major sources of power consumption: dynamic power and static
power. Dynamic power is consumed when signal transitions take place at gate
outputs. Static power (also called leakage power) is consumed when the circuit
is either active or idle. According to Kao et al. [2002], static power may take
up to 42% of total power in 90-nm technology. In Li et al. [2003], a similar
percentage is reported for certain FPGA architectures in 100-nm technology.
Therefore, both dynamic and static power needs to be optimized.

Dynamic power consumption is calculated as Pd = 0.5 ·S ·C ·V 2
dd · f , where S

denotes the switching activity of the circuit, C denotes the effective capacitance,
Vdd is the supply voltage, and f is the operating frequency. To lower dynamic
power, each of these factors can be reduced. Deploying multiple supply voltages
is one of the most effective techniques to reduce dynamic power. This technique
has the advantage of reducing power dissipation without sacrificing the per-
formance of the system by assigning high Vdd to critical paths and low Vdd
to non-critical paths. Clusters of high-Vdd cells and low-Vdd cells were first
explored in Usami and Horowitz [1995]. The work in Takahashi et al. [1998]
adopted multiple supply voltages in the real design of a MPEG4 video codec. To
reduce static power, power gating is an efficient technique [Duarte et al. 2002;
Mutoh et al. 1995]. When there are no useful operations executing on a module,
it can be shut down to get rid of both dynamic and static power.

Our work studies power optimization at the behavioral level. The higher
the design level is, the more critical the design decisions are for the quality
of the final result. The behavioral synthesis process mainly consists of three
stages: scheduling, allocation, and assignment. Scheduling determines when
a computational operation will be executed; allocation determines how many
instances of each type of resources (functional units, registers, or interconnec-
tion units) are needed; assignment assigns/binds operations, variables, or data-
transfers to these resources. The last process is called functional unit binding
when working with operations. Some people use module assignment to refer
to the same concept. The number of resources may be limited and the total
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time (latency) to finish the operations can be constrained. This makes most of
the high-level synthesis problems difficult. The essence of behavioral synthesis
with multiple supply voltages is to assign low-Vdd values to as many operations
as possible under latency and resource constraints. In Raje and Sarrafzadeh
[1995], an optimal solution was given for time-constrained scheduling problem
for data-flow graphs under multiple voltages. No resource constraint was con-
sidered. In Chang and Pedram [1997], a scheduling algorithm (with binding
as a post-processing step) was presented. It considered multiple supply volt-
ages and switching activities in its energy model. Works in Johnson and Roy
[1997]; Lin et al. [1997]; and Manzak and Chakrabarti [2002] proposed differ-
ent heuristics for the time- and resource-constrained scheduling and binding
problem under multiple voltages. These works adopted iterative methods to
perform the two subtasks simultaneously. However, no switching activity re-
duction through binding was considered in their formulations. There are quite
some works that focus on resource binding alone. Works in Chang and Pedram
[1995, 1996] and Lyuh and Kim [2003] minimized switching activity for var-
ious resources, such as registers, functional units, and buses, but only single
Vdd was considered. There is no optimal algorithm that combines both voltage
assignment and resource binding for power reduction.

In this article, we focus on operational binding with voltage assignment,
and derive an optimal algorithm to simultaneously assign maximum number
of operations to low Vdd levels and minimize total switching activity through
functional unit binding for the design. We use a network flow formulation. The
solution of the min-cost flow will produce the binding and voltage assignment
solutions. All of these are done under latency and resource bounds given by
the initial scheduling. In addition, we change the initial scheduling to study
power/energy-latency trade-offs, and provide power/energy optimization solu-
tions under different design constraints. We design our architecture model in
such a way so that functional units can be driven by different Vdd levels, or
get into a sleep mode. Thus, we can target reducing dynamic power through
multiple Vdds and reducing static power through power gating. Experimental
results show that we can achieve significant amount of power savings compared
to the single-Vdd case.

In the following, Sections 2 and 3 provide the details of our architecture model
and power model. Section 4 describes our simultaneous multi-Vdd assignment
and functional unit binding in detail. Section 5 shows experimental results, and
Section 6 concludes this article.

2. ARCHITECTURE MODEL

We use the dual-Vdd case as an example to present our architecture model. It
is shown in Figure 1. We insert two PMOS transistors between the high-Vdd
(VddH) and low-Vdd (VddL) power rails and a functional unit (FU). The PMOS
transistors are like sleep transistors, and the control bits C1 and C2 are used
to control them so that an appropriate supply voltage can be chosen for the
FU. When both transistors are off, the FU is in the sleep mode. This scheme
is similar to that used in Li et al. [2004], where each configurable logic block
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Fig. 1. Proposed architecture scheme for dual supply voltages.

(CLB) in an FPGA is in such an arrangement. We believe functional unit-level
granularity for multi-Vdd configuration is natural for high-level synthesis. In
addition, we assume that the FU’s voltage can be dynamically changed during
run time, which dramatically improves the chances for operations to execute
under VddL. A more detailed diagram of the FU shows level converters (LC) at
the input ports. A VddL signal needs to go through the level converter if it is
going to drive a VddH device. Otherwise, the signal can bypass the converter
through the MUX. We use the converter design from Chen et al. [2004]. A single
level converter contributes 0.08-ns delay and 9.7E-15 Joul energy per switch.
The MUX associated with the converter contributes 14 ps delay and about
2.0E-15 Joul energy per switch. All of these data were obtained with 100 nm
technology [Chen et al. 2004]. The bit-width of the FU is 24. We assume that
we can use an arbitrary number of voltage levels as long as it is realizable and
reasonable practically in the architecture design. For example, an architecture
with three Vdds will have three power rails and three PMOS transistors for
each FU to control the voltage selection. Our main focus is to study the impact
of different voltage levels and their combinations on power/energy reduction
systematically, while considering both voltage assignment and functional unit
binding simultaneously.

According to previous works, the overhead of dual-Vdd power rails and level
converters is acceptable compared to the amount of power savings achieved.
A new layout style of standard cells for ASIC designs was proposed in Usami
et al. [1998], showing that adding a second power grid and level converters
increased circuit area by 15%, but saved power by 47%. For FPGA designs, the
area overhead of sleep transistors was 24% over the original CLB size with 5%
delay overhead, and the power consumption of the sleep transistors could be
optimized and become almost ignorable [Li et al. 2004].

3. POWER MODEL AND ANALYSIS

3.1 Resource Characterization

We use delay and power data extracted from Chen et al. [2003] for adders and
multipliers driven by VddH = 1.3v. The data was obtained through an FPGA
evaluation tool fpgaEva LP [Li et al. 2003] under 100-nm technology. We add
in several more VddL values to extend the voltage domain of our study. The
characterization data for the functional units driven by different VddL values
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Table I. Characterization of FUs for Various Supply Voltages

Adder/Subtractor
Characterization Items VddH VddL1 VddL2 VddL3 VddL4
Voltage Level (v) 1.3 1 0.8 0.7 0.5
Exe Delay (ns) 6.1 8 10.6 12.7 23.3
Exe Cycle 1 2 2 3 4
Power (w) 0.016 0.0095 0.006 0.0046 0.0024
E per Switch (J) 3.20E-10 1.89E-10 1.20E-10 9.28E-11 4.73E-11

Multiplier
VddH VddL1 VddL2 VddL3 VddL4

Voltage Level (v) 1.3 1 0.8 0.7 0.5
Exe Delay (ns) 14.6 19.2 25.3 30.5 55.8
Exe Cycle 3 4 5 5 9
Power (w) 0.246 0.146 0.093 0.071 0.036
E per Switch (J) 4.90E-09 2.90E-09 1.86E-09 1.42E-09 7.25E-10

are obtained through scaling. The threshold voltage for the transistors stays as
a constant Vth = 0.25v. Therefore, as the voltage scales down, the delays of the
resources become longer.1 Meanwhile, both dynamic and leakage power scales
down as well.2 The clock period is set as 6.5 ns, that is, the delay of each cycle
(control step) in the schedule takes 6.5 ns.

Table I shows the details. Exe Cycle represents the number of cycles for the
operation to finish one 24-bit addition or multiplication. E per Switch is the
energy consumed by the adder or multiplier when the output of the FU has a
full voltage swing from logic 0 to 1. Notice that we use the data related to FPGA
only because these data are available in recent publications. Our work can be
applied to the ASIC design flow as well.

3.2 Power Gating and Voltage Switching

Next, we derive the conditions of applying power gating and compute the power
overhead to charge an FU from VddL to VddH. According to the data presented
in Li and He [2001], the circuit controlled by a sleep transistor needs at least one
cycle to shut down and another cycle to come back alive. The maximum turn-on
charging current can reach up to 87% larger than the normal switching current.
Therefore, the turn-on power overhead (dynamic power) is at least equal to the
dynamic power consumed during the normal operation. We can quantify this
overhead by the following formula:

Poverhead = Ratiosignal restore

0.5 · SAFU
· DynamicPower, (1)

where Ratiosignal restore is the percentage of signals that are to be restored to logic
high to power up the FU, and SAFU is the switching activity for the FU, which

1Delay of the resource is proportional to Vdd
(Vdd−Vth)α [Gonzalez 1997]. We use α = 1.6 in this work.

2Dynamic power scales down through the term V 2
dd. Leakage power scales down due to the scaling of

VDS (drain/source potential difference) and VGS (gate/source potential difference) while Vth being
maintained as a constant [Anderson and Najm 2004]. We consider this effect in our power model.
When a functional unit stays idle but is not shut down (to be explained later), it will be driven by
the lowest possible voltage level available in the architecture to reduce leakage power.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.



Optimal Simultaneous Module and Multivoltage Assignment • 367

counts signal switching of both 0→1 and 1→0. We assume that, on average, half
of the signals are to be restored to logic high in the FU, that is, Ratiosignal restore =
0.5. We can obtain SAFU through simulations on our designs. Poverhead captures
the power overhead due to a full swing of logic 0 to 1. Since power gating
only saves static power (assuming no signal switches for idle FUs), we need to
guarantee that the static power saved will surpass the turn-on power overhead
before turning off the FU. Thus, we define the following formula to calculate the
number of sleep cycles for a FU to start saving power through power gating:

SleepCycle =
⌈

Poverhead

StaticPower

⌉
+ 2. (2)

The number 2 at the end counts in one cycle to turn off the FU and one cycle
to turn on the FU. By this formula, it will need 9 (13) cycles for our adder
(multiplier) to remain idle to guarantee that turning off the FU will save power.3

Charging energy can be calculated as follows [Li et al. 2003]:

E(V1 → V2) = C
2

(V1 − V2)(V1 + V2 − 2Vdd). (3)

C is load capacitance; V1 is the initial value of gate output with a rising tran-
sition; V2 is the final voltage. V2 = VddH in our case. Plug in our VddL and
VddH values, the charging energy is relatively small. For example, charging
from 0.8v to 1.3v is only 15% of the charging energy compared to that from
GND to 1.3v. Our Exe Cycle numbers assigned to the VddL operations provide
enough cushion time.4 Since the charging from VddL to VddH can be done in a
much shorter time than that from GND to VddH (turn-on time), we don’t need
an extra cycle when the FU’s voltage changes from VddL to VddH or vice versa,
by taking advantage of the cushion time available.

3.3 Switching Activity Estimation

We use an efficient simulation-based switching activity calculator, which is sim-
ilar to Bogliolo et al. [1999]. We perform simulation just once at the beginning
and estimate the switching activity between every pair of operations if this pair
of operations can be bound into a single functional unit. We can also compute
switching activities for any legal binding solution afterwards without repeat-
ing simulations. We take a scheduled design so each operation in the design is
already assigned to a certain control step.

Two operations are comparable if they can be bound to the same functional
unit (to be formally defined later). We define Cin(O1, O2) as the input toggle
count from operation O1 to operation O2 when these two operations are bound
into a functional unit W . It represents the input transitions when W switches

3Leakage power in the total power consumption is 23% for adders and 16% for multipliers in
our characterization. Average SAFU is equal to 0.5 in our case. The adder’s SleepCycle = ceiling
[0.77/(0.5*0.23)] + 2 = 9. The SleepCycle of the multiplier is similarly calculated.
4For example, 0.8v addition only needs 10.6 ns. There is a 2∗6.5–10.6 = 2.4ns cushion time between
the end of the addition and the start of a new cycle. This assumes that an operation can cross
multiple clock cycles through proper controller design.
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the execution from O1 to O2. Let (I1→ I2. . . → IK ) be a set of primary input
vectors for the design, Cin(O1, O2) can be calculated as follows:

Cin(O1, O2) =
K∑

j=1

DH
(
I j

1 , I j
2

)
, (4)

where DH (X , Y ) represents the Hamming Distance between bit vectors X and
Y . I j

1 is the bit vector on the input ports of W when executing O1 under the
primary input vector I j (I j propagates through the design and generates new
bit vectors for the internal operational nodes), and I j

2 is the bit vector on W
when executing O2 under the same primary input vector I j . Notice that W
has two ports. We use Cin(O1, O2) to represent the input toggle counts of both
ports for simplicity reason. Similarly, we can calculate the output toggle count
Cout(O1, O2) for W while executing O1 and O2. The switching activity for binding
O1 and O2 together is estimated below:

S12 = Cin(O1, O2) + Cout(O1, O2)
3 × Bit width × K

, (5)

where Bit width is the input vector width of W (set as 24 in our study).
We now present the method to estimate the switching activity on the design

after functional unit binding is done. For each functional unit, a set of operations
are assigned to it in a certain order. For functional unit W , let (O1→ O2. . . →
ON ) be the operation set in the execution order. We still have (I1→ I2. . . → IK )
as primary input vectors. Cin(Oi, Oi+1) and Cin(ON , O1) are defined as follows:

Cin(Oi, Oi+1) =
K∑

j=1

DH
(
I j
i , I j

i+1

)
(6)

Cin(ON , O1) =
K −1∑
j=1

DH
(
I j

N , I j+1
1

)
(7)

where 1 ≤ i < N. Cin(ON , O1) is the toggle count when W switches operation
from ON back to O1 when a new input vector arrives on the primary inputs.
The switching activity of the inputs on W is defined as

Sin =

N−1∑
i=1

Cin(Oi, Oi+1) + Cin(ON , O1)

2 × Bit width × (N × K − 1)
. (8)

A matrix of Cin can be constructed and used for looking up when calculating
Sin after every binding solution. For two comparable operations Oi and O j ,
there will be two entries [Oi, O j ] and [O j , Oi] in the pre-calculated matrix.
Suppose Oi is scheduled before O j , the value of [Oi, O j ] is from Eq. (6) and the
value of [O j , Oi] is from (7). After binding, the operation set is known for every
functional unit. According to the execution order of the operation set, every
Cin value is looked up in the matrix, and the input switching activity can be
calculated based on Eq. (8). The toggle count and the switching activity of the
output of W are similarly calculated.
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3.4 Overall Power Estimation

After voltage assignment and binding for the operations, we estimate the
switching activity for each FU. Both dynamic power and static power are es-
timated and accumulated when the FU is active. Static power of the FU is
estimated and accumulated when the FU is idle without power gating. The
effect and overhead of power gating are counted when it is applied. The effect
of power reduction due to voltage scaling is calculated. We also consider the
power overhead due to voltage switching on a FU and the power overhead of
level converters. One thing worth mentioning is that we do not count the power
overhead of multiple power rails because it is hard to quantify without a real
layout of the chip.

4. OPTIMAL VOLTAGE ASSIGNMENT WITH FUNCTIONAL UNIT BINDING

4.1 Problem Formulation

We define the problem of optimal voltage assignment with functional unit bind-
ing (optVF problem) as follows:

Inputs. A scheduled data-intensive design (its operations and data depen-
dencies can be represented by a data flow graph); a set of predefined voltage
levels; estimated switching activities between the operations; a set of functional
units (resource constraints); and a latency constraint.

Objective. Assign voltage levels to all the operations and bind these opera-
tions to the set of functional units so that the total number of operations driven
by low-Vdd levels is maximized under the resource and latency constraints with
minimized total switching activity.

We assume that the initial scheduling result of the input design fulfills la-
tency and resource constraints. During voltage assignment and binding, we do
not perform rescheduling of the operations. Therefore, the objective is to carry
out voltage assignment and functional unit binding in such a way so that these
constraints are still honored while minimizing power. In this section, our main
focus is to present an optimal algorithm to achieve our objective. We also ap-
ply power gating as a post-processing procedure and examine its effectiveness
on leakage power reduction. In the next, Section 4.2 presents some definitions
and problem reduction. Section 4.3 presents a network flow formulation to solve
the optVF problem for the dual-Vdd case. Section 4.4 extends our optimal so-
lution into the multiple-Vdd case. Section 4.5 presents a simple power gating
approach.

4.2 Definitions and Problem Reduction

Given a data flow graph (DFG), G = (V , A), set V corresponds to operations and
set A corresponds to data flowing between operations. An edge a = (x, y)|x, y ∈
V , a ∈ A indicates there is a data dependency between operations x and y .
Scheduling assigns operations to control steps so that the overall execution
latency meets a certain time constraint, and the number of resources used
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Fig. 2. Example of extendable operations.

also meets a certain resource constraint. After scheduling, the lifetime of each
operation in the DFG is the time during which the operation is active, defined as
an interval [startTime, endTime]. A comparability graph Gc = (Vc, Ac) for these
operations can then be constructed for addition and multiplication separately.
Vc corresponds to all the operations of the same type, and there is a directed
edge ac = (vi, vj )|ac ∈ Ac between two vertices if and only if their corresponding
lifetimes do not overlap, and operation vi comes before vj . In such a case, we
call operations vi and vj comparable with each other, and they can be bound
into a single FU without lifetime conflicts. Let sij denote the weight of edge ac,
which represents the cost when we bind vi and vj into the same FU. This cost
is the switching activity between these two operations when vj executes right
after vi on the FU, which is estimated by equation (5) in Section 3.

We first examine the dual-Vdd case. We show our problem formulation and
solution, and prove its optimality. We then extend our formulation into multi-
ple Vdds. First of all, we call our high Vdd VddH, and our low Vdd VddL. In
addition, we introduce two definitions. An operation O is extendable if O can
be assigned to VddL, and the extended execution delay of O will not violate
the overall latency constraint, and in the same time, the data dependencies
between O and other operations are still valid. In other words, O will still gen-
erate its data in time so that the data can flow to all the other operations that
require it. If O is assigned VddL in the final solution, we say O is extended.
Its startTime stays the same as before but its endTime is increased. Due to
the resource constraint, not all extendable operations can be extended even-
tually. Figure 2 shows an example. Figure 2(a) shows a scheduled DFG with
6 multiplications and 2 additions. The Exe Cycle is 3 cycles for VddH and 5
cycles for VddL for the multiplication. Latency constraint is 8 control steps,
and the number of available multipliers is 3. We will examine multiplication
nodes. Node 6 is not extendable because of the data dependency. Nodes 4 and 5
are not extendable due to the latency constraint. Nodes 1, 2 and 3 are extend-
able, which are shown in Figure 2(b). However, only two can be extended to
meet the resource constraint. If operations 1 and 3, or 2 and 3 are chosen to be
extended, although resource constraint is fulfilled for control step 5, it will be
violated in step 6 because node 3 is no longer comparable with nodes 4, 5 and 6
after its extension (their lifetimes overlap at control step 6). Therefore, we need
an efficient way to assign VddL to as many operations as possible within the
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constraints. Suppose Me is the maximum number possible of extended opera-
tions given resource and latency constraints, and the total number of extendable
operations is Te, we have Me ≤ Te for a design. It is easy to see that there may
be different sets of Me operations and each of such sets fulfills the constraints.
Which set of Me operations to extend will influence power reduction because
different extensions will change the original Gc into a different new compara-
bility graph since the lifetimes of the Me operations in Gc have changed. Let
G ′

c denote the new comparability graph due to Me extensions. G ′
c has the same

node set Vc but a different Ac. Notice that although we process multiplications
and additions separately, the optimality of our solution is not changed by this
separation. This is because that we simulate our switching activities on the
whole design and we honor the data dependencies of the whole design when we
extend nodes. We have to bind additions and multiplications separately because
an addition cannot be bound with a multiplication.

Given a comparability graph Gc = (Vc, Ac), our objective for solving the
optVF problem becomes the following two related optimization goals: (1) find
a node subset VL ⊂ Vc and |VL| = Me so the extensions of VL nodes will give
the best new comparability graph GB among all the G ′

c graphs in terms of
power reduction and meet the constraints; (2) find an edge subset in GB that
covers all the vertices in Vc in such a way that the sum of the edge weights
in the subset is the minimum, and all the vertices can be bound into no more
than k FUs. The first goal is voltage assignment, and the second goal is FU
binding for reducing switching activity. We can see these two goals are inter-
twined because we cannot achieve the first goal without achieving the sec-
ond goal or vice-versa. The second goal of the objective can be formulated as
a traditional clique partitioning problem. Each clique corresponds to the op-
erations that are to be bound into a single FU. Although clique partitioning
problem is NP-hard for general graphs, it is shown that we can find the mini-
mum number of cliques required to bind all the nodes in polynomial time when
working with comparability graphs [De Micheli 1994]. In our work, k is the
minimum number of FUs required. Early works proposed optimal solutions to
compute maximum k-covering in weighted transitive graphs [Sarrafzadeh and
Lou 1993] and maximum weighted k-cofamily in partially ordered sets [Cong
and Liu 1991] through network flow formulations. Both works found various
applications across many optimization fields. Comparability graphs belong to
transitive graphs [De Micheli 1994] and can also be represented using partially
ordered sets [Chen and Cong 2004a]. Therefore, there are previous works that
used network formulation to solve various binding problems on comparability
graphs. In the next section, we will discuss more details of these early works,
and then present our simultaneous voltage and functional unit binding solution
by computing the min-cost k-flow in a flow network.

4.3 Network Flow Formulation for the Dual-Vdd Case

Various binding algorithms have been proposed previously for reducing circuit
power through network flow formulation. In Chang and Pedram [1995], an
optimal low-power register binding algorithm to reduce total switching activity
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Fig. 3. An example showing the formulation accommodating two Vdds.

was presented. However, it did not guarantee using the minimum number of k
resources during the binding process. In other words, its network-flow solution
might not cover all the nodes with k resources in the comparability graph. In
Chang and Pedram [1996], the same authors formulated functional unit binding
as a multi-commodity flow problem to reduce switching activity. The inter-frame
binding constraints made the problem hard (to be discussed later). In Chen
and Cong [2004a], a register binding algorithm was presented to reduce total
MUX connections in the design by computing the min-weighted k-cofamilies. It
showed consistent positive impact on area, delay and power optimizations due
to reduced interconnect usage. In Lyuh and Kim [2003], a single-commodity
network flow was used to solve the bus binding problem with improved run
time. It then presented a heuristic to fulfill the inter-frame binding constraints
and showed promising results. None of these works considered dual Vdds in
their formulations. In this work, we will build voltage assignment into our
formulation and show that we can assign the maximum number of operations to
VddL under latency and resource constraints and achieve min-power functional
unit binding simultaneously. We always guarantee that we use no more than k
resources.

A network NG = (s, t, Vn, En, C, K ) is constructed based on the comparabil-
ity graph Gc = (Vc, Ac). This is an extension to the one used in Chang and
Pedram [1995], and we will introduce extra vertices to provide voltage assign-
ment consideration. First, there are source vertex s and sink vertex t. The
additional edges are added from s to every vertex in Vc, and from every vertex
in Vc to t. Second, for each extendable vertex v in Vc, there is an extra node v′

connecting to v. There are additional edges between v′ to the vertices compa-
rable with it (these vertices are still comparable to node v after v is extended),
and an additional edge between v′ to t. NG has the cost function C and the
capacity K defined on each edge in En. Figure 3 shows an example. Figure 3(a)
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is a simple scheduled DFG with all additions. Figure 3(b) is the corresponding
comparability graph. Figure 3(c) is the graph NG for Figure 3(b). Here an ex-
tended node will take 2 cycles. The edges connecting to the source or the sink
vertices use dashed lines to differentiate them from other edges. Notice node 1′

is only connected to node 3 and 4 because node 1 is no longer comparable with
node 2 after its extension.

Let Ve denote the set of all the extendable nodes in Vc. We have Ve ⊂ Vc. We
use the symbol → to represent that two vertices are comparable with each other.
Formally, the network NG = (s, t, Vn, En, C, K ) is defined as the following:

Vn = Vc ∪ {s, t} ∪ {v′|v ∈ Ve}
En = Ac ∪ {(s, v), (v, t)|v ∈ Vc} ∪ {(v, v′), (v′, t)|v ∈ Ve}

∪ {(v′
i, vj )|v′

i → vj ; i 
= j ; vi ∈ Ve; vj ∈ Vc}
C(s, v) = 0|v ∈ Vc

C(v, t) = 0|v ∈ Vc

C(v′, t) = 0|v ∈ Ve

C(vi, vj ) = −L × (1 − sij)|vi → vj ; i 
= j ; vi, vj ∈ Vc

C(v′
i, vj ) = −L × (1 − sij)|v′

i → vj ; i 
= j ; vi ∈ Ve; vj ∈ Vc

C(v, v′) = −T |v ∈ Ve

K (en|en ∈ En) = 1,

where C is the cost assigned on the edges and K is the capacity on the edges.
sij is the switching activity on the edge (vi, vj ). L is a positive constant and is
set to 100. L is used to scale the costs into integer numbers. To maximize the
number of extended operations, we need to guarantee that C(vi, v′

i) + C(v′
i, vj ) <

C(vi, vj ). That is the reason that C(v, v′) is set as –T , where T = L ×|Vc|. Value
T guarantees that v will be extended if it is the only extendable node within
resource constraint as an extreme case, no matter what the values of C(vi, vj )
are for the edges (to be shown later). Notice sij < 1 always. Therefore, we set
the cost C(vi, vj ) as a negative value. The smaller sij is, the smaller C(vi, vj ) will
be. Notice NG captures all the possible configurations of G ′

c.
Our algorithm uses the min-cost flow solution in the network to generate the

voltage and module assignments. It is necessary to allow only a unit flow to go
through each node v ∈ Vc. To guarantee this, we apply a node-splitting tech-
nique, which is similar to that used in Chang and Pedram [1995]. We duplicate
every vertex v ∈ Vc in NG into another node vd . There is an edge from v to vd . If
there is an edge (vi, vj ) ∈ Ac, there is an edge (vd

i , vj ) in the new network, named
Nd

G . C(vd
i , vj ) is the same as C(vi, vj ). The original edge (vi, vj ) is removed from

Nd
G . Meanwhile, node v′ will be connected to vd instead of v. All the edges are

assigned with a capacity of 1. In addition, we assign cost C(v, vd ) = −X , where
X is a positive constant and X ≥ 2T. We can show that this cost assignment
will guarantee that all the nodes in Vc will be covered when the min-cost flow
in Nd

G generates the binding and voltage assignment solution. Figure 4 shows
an example.

LEMMA 1. A flow f , with | f | = 1, in the network NG corresponds to a clique
χ in the original comparability graph Gc with voltage assignment. An edge
(vi, vj ) in the flow indicates operations vi and vj will be bound into the same
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Fig. 4. A simple NG and its split graph Nd
G.

FU W. An edge (v, v′) in the flow indicates operation v will be assigned to VddL
when executing in W.

PROOF. A unit flow from source to sink represents a sequence of operations
that are comparable with one another. Therefore, they form a clique and can be
bound into the same FU. When an edge (v, v′) is in the flow, v will be assigned
to VddL. This is true by the construction of the network NG .

LEMMA 2. A flow f , with | f | = k(ak−flow), that passes through every node
v ∈ Vc by a unit flow is equivalent to finding k disjoint paths (or chains) in NG,
thus generating k cliques in Gc covering all the operational nodes, which is a
legal binding solution with voltage assignments.

PROOF. Since every node only allows a unit flow to pass, the flow with value
k will generate k disjoint paths in NG (except nodes s and t). Each path rep-
resents one group of operations that are comparable with one another. By
Lemma 1, each path corresponds to one clique χ in the original compatibility
graph Gc with voltage assignment. k disjoint paths correspond to a partition of
the graph Gc into k cliques. If the k flow passes all the nodes in Vc, the resulted
k cliques will cover all the nodes in Vc as well. Thus, a legal binding solution
is generated where each clique can be bound into a separate FU with voltage
assignments.

LEMMA 3. Due to cost assignments, the following results hold:

(1) Given any legal binding solution, let S be the total sum of costs from C(vd
i , vj )

(i 
= j) in the solution, we will have −S < T.
(2) If three nodes are comparable with one another, for example, v1 → v2 → v3,

the cost of binding v1, v2, and v3 together into one FU is always smaller than
just binding v1and v3 together even when v1 is extendable.

PROOF

(1) A legal binding solution is equivalent to forming k disjoint chains. Suppose
|Vc| = n. It means that there will be (n−k) edges (vd

i , vj ) or (v′
i, vj )|vi, vj ∈ Vc
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(i 
= j) to form these k chains in Nd
G (suppose a chain contains x edges, it

will contain x + 1 vertices). For any C(vd
i , vj ), we have −C(vd

i , vj ) ≤ L. The
total cost on these edges is S. Therefore, we have S = (n − k) × C(vd

i , vj ).
Thus, −S ≤ (n − k) × L < n × L = T .

(2) We have C(v, vd ) = −X , where X ≥ 2T . If v1 is not extendable, the
cost of binding three variables together C(v1, vd

1 ) + C(vd
1 , v2) + C(v2, vd

2 ) +
C(vd

2 , v3) + C(v3, vd
3 ) is smaller than the cost of binding v1 and v3 together,

which is C(v1, vd
1 ) + C(vd

1 , v3) + C(v3, vd
3 ). If v1 is extendable, we still have

C(v1, vd
1 ) + C(vd

1 , v2) + C(v2, vd
2 ) + C(vd

2 , v3) + C(v3, vd
3 ) < C(v1, vd

1 ) +
C(vd

1 , v′
1) + C(v′

1, v3) + C(v3, vd
3 ).

THEOREM 1. The min-cost flow f , with | f | = k (min-cost k-flow) on the net-
work Nd

G gives the largest number of extended operations in the design with
the minimum total switching activity on k functional units for the circuit repre-
sented by Gc under the dual-Vdd framework.

PROOF. We first introduce some observations using Gc and NG . By Lemma
2, we know that we need k cliques (or disjoint chains) covering all the nodes in
Gc to form the binding solution. First of all, this is possible due to Dilworth’s
theorem5 [Dilworth 1950] because the comparability relation on Vc nodes makes
Vc a partially ordered set and the subset of Vc, containing the largest number of
mutually noncomparable nodes, has cardinality k. Suppose |Vc| = n. It means
that there will be (n − k) edges (vi, vj )|vi, vj ∈ Vc (i 
= j) to form these k dis-
joint chains, which can be found by a k-flow in NG(k different unit-flows). Let
us denote these (n − k) edges as set Ec. Different k-flow solutions will give
different Ec but |Ec| = n − k always.6 In addition, let Me be the maximum
number of nodes that can be extended without violating the constraints. After
Me nodes are extended, there are still k disjoint chains from NG and corre-
sponding Ec edges (containing less (vi, vj ) edges and at most Me (v′

i, vj ) edges
|vi, vj ∈ Vc) on these k chains. The additional edges on the k-flow are Me VddL
extension edges, (v, v′)|v ∈ Vc. We first show that our solution will cover all
the Vc nodes through disjoint k-chains, and then we show that our solution is
optimal.

The min-cost k-flow from Nd
G will cover all the nodes in Vc by k disjoint

chains. Nd
G is generated by splitting each node v ∈ Vc in NG . First we will have

k disjoint chains because we have a k-flow and each v ∈ Vc only allows one unit
flow to pass due to the unit capacity assigned for the edge (v, vd ) after splitting
v. Next, we can show that if a k-flow does not cover all the nodes it will not be the
min-cost k-flow. Suppose node vx ∈ Vc is not covered in current flow solution,
and |Ec1| = n − k − 1. There will be another feasible k-flow that covers all the

5This theorem indicates that a partially ordered set P can be partitioned into k-disjoint chains
covering all the elements if P contains at least one subset Y , where |Y | = k; every pair of elements
in Y are non-comparable with each other; and k is the largest number for such kind of subsets in
P . Please refer to Chen and Cong [2004a] for the definition of partially ordered sets.
6This is true when every node is at least comparable with one other node in the graph. The proof
still holds when there are nodes that are not comparable with any other nodes (their lifetimes
conflict with all the other nodes). Then, each of these nodes just occupies its own FU in the binding
solution.
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Fig. 5. An example showing that node covering has higher priority than VddL extension.

nodes including vx . The cost of the new flow will be smaller than before because
–X is added to the current cost by covering vx . This cost reduction surpasses any
possible cost increases on the new (n − k) edges if these edges have more total
cost than the old Ec1 edges. This is because X ≥ 2T = 2 × L × |Vc| > L × n >

−C(vd
i , vj ) × (n − k) (Lemma 3). Thus, the old flow is not the min-cost k-flow.

Notice that X ≥ 2T guarantees that covering all Vc nodes has higher priority
than VddL extensions. Figure 5 shows an example. If node 1 is extended, it
cannot be bound with node 2 anymore due to lifetime conflict. In such a case,
binding node 1 and 2 together takes priority than the extension of node 1. This
guarantees that the flow will cover all the nodes first to fulfill the resource
constraint before node extensions. Lemma 3 (result 2) addresses this precisely.

The min-cost k-flow will extend Me nodes, which is the maximum ever possible
within the resource constraint, and return the minimum total switching activity
thereafter. As we show before, we still have a feasible solution by having Me

nodes extended, that is, all the Vc nodes are still covered through (n−k) number
of Ec edges. We can show that if just Me − 1 nodes are extended, it will not be
the min-cost k-flow following a similar argument as used before. Suppose there
are (Me − 1) nodes extended. The total cost on the Ec edges reflects the total
amount of switching activity. Now, we can extend one more node and still have
a feasible k-flow. After this extension, the cost on new Ec edges can at most
increase by −S, where −S < T (Lemma 3). Thus, the total cost now will be
smaller due to the new extension. Therefore, the min-cost k-flow has to extend
Me nodes. Given this is true, the min-cost k-flow indeed returns a set Ec with the
minimum total cost on the Ec edges, and thus provides the optimal solution.

Theorem 1 is optimal in the sense that it will always find the best set of Me

nodes (also the largest possible) to extend, and achieve the minimum switching
activity for binding together with these low-Vdd extensions simultaneously.
Notice that this theorem holds when we ignore the inter-frame constraints
presented in Chang and Pedram [1996], which capture the switching activity
in the cyclic executions of the DFG, that is, the switching activity when a new
set of vectors arrives on the inputs of the FUs to start execution from the
beginning of the DFG again (represented by Eq. (7) in Section 3). However, we
count these switches in our power estimation to make our experimental results
more accurate (Eq. (8) in Section 3). Our formulation can be easily extended to
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Fig. 6. An example showing the formulation accommodating three Vdds.

consider inter-frame constraints by building a multicommodity flow network
as shown in Chang and Pedram [1996]. The min-cost multicommodity flow
solution will provide the largest extended-operation number and the minimum
switching activity with interframe constraints. Since our goal is to show that we
can achieve optimality under multi-Vdd consideration, multicommodity flow is
not the focus of this work. We do plan to add this extension in the future.

Our task then becomes finding the min-cost k-flow in the network Nd
G . It can

be obtained through capacity scaling and successive shortest path computation
and has running complexity O(|E| logk (|E|+|V |log|V |)). After we obtain the
min-cost k-flow, each edge with a unit flow in Nd

G , (vd
i , vj ), represents that oper-

ations vi and vj should be bound together into the same FU and viis operating
under VddH. Each edge (v′

i, vj ) represents vi and vj should be bound together
and vi is operating under VddL. If a flow passes s ⇒ v ⇒ vd ⇒ [v′] ⇒ t, it rep-
resents that v is occupying a single FU just by itself. It operates either under
VddH or VddL (when v′ exists).

4.4 Extension for Multiple Vdds

In this section, we show how to build more Vdds into our network flow formu-
lation and still achieve optimal solution. We will use three Vdds as an example
but the same principle applies to more numbers of Vdds. We call our high Vdd
VddH, and our low Vdds VddL1 and VddL2. We have VddH > VddL1 > VddL2.
To support a second low Vdd, we can use new v′′ nodes connecting to v nodes in
NG . v′′nodes will be similarly processed as v′ nodes as in the dual-Vdd case, and
their associated costs can be designed and assigned. The min-cost flow will de-
cide either picking v′ or v′′ nodes in its solution. Figure 6(a) shows the graph NG

with VddH = 1.3v, VddL1 = 0.8v, and VddL2 = 0.5v for the comparability graph
shown in Figure 3(b). The exe cycles for the operations driven by these voltages
are 1, 2, and 4 respectively (Table I). Figure 6(b) shows the corresponding Nd

G
for this example.
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As shown in Figure 6(b), the cost for edge vd → v′, C(vd , v′) = −T1, and the
cost for edge vd → v′′, C(vd , v′′) = −T2.T1 is equal to L ×|Vc| as in the dual-Vdd
case. T2 = T1 × (VddL2

1/VddL2
2) = 2.56T1 for the voltage levels we use in this

example. Therefore, when an operation is executing under VddL2, its dynamic
power will be reduced by 2.56X compared to the case where it is executing
under VddL1 due to these two different voltage scaling. To guarantee that the
solution will still cover all the operation nodes, we set X ≥ 2T2. All the other
costs and capacities are similarly assigned as in the dual-Vdd case. After we
obtain the min-cost k-flow, each edge with a unit flow in Nd

G , (vd
i , vj ), represents

that operations vi and vj should be bound together into the same FU and vi is
operating under VddH. Each edge (v′

i, vj ) or (v′′
i , vj ) represents vi and vj should

be bound together and vi is operating under VddL1 or VddL2 respectively. If
we have a series of low Vdd values such as VddL1 > VddL2 > . . . > VddLn−1 >

VddLn, we will define a series of corresponding T values so that they are in the
following relationship:

T1 = L × |Vc|
T2 = T1 × (

VddL2
1/VddL2

2

)
. . .

Tn−1 = Tn−2 × (
VddL2

n−2/VddL2
n−1

)
Tn = Tn−1 × (

VddL2
n−1/VddL2

n

)
Then, we set X ≥ 2Tn.We then build our network Nd

G by adopting n different
v′-type nodes, such as v′ and v′′ nodes in the three-Vdd case. We connect these
v′-type nodes to vd as long as the delay extensions of these v′-type nodes do not
violate data dependency and the latency constraint, that is, they are extendable.
We then assign the T values to the edges of vd to v′-type nodes respectively as
we do for the three-Vdd case. We have the following theorem:

THEOREM 2. Given a set of voltage levels and the power and delay values
for the resources driven by these voltages, the min-cost k-flow f on the network
Nd

G gives the largest total number of extended operations guided by voltage
scaling and a functional unit binding solution with the minimum total switching
activity on k functional units.

PROOF. Simple extension of Theorem 1.

This theorem guarantees that our algorithm is able to search the combined
solution space of different voltage assignments and functional unit bindings
and find an optimal solution. It will get the largest total number of extended
operations with different voltage levels to achieve the maximum power reduc-
tion through voltage scaling and simultaneously minimize the total switching
activity of the design to reduce dynamic power.

4.5 Power Gating

We follow a simple power gating scheme. After we obtain the binding solution,
we search through the operations bound in each FU and find whether the FU
is idle for a certain period of time (idle cycle) that is longer than SleepCycle
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(Section 3) between two consecutive operations. If this is the case, we count the
static power saved during the number of cycles = idle cycle − SleepCycle. This
simple scheme is used because our main goal in this work is to reduce dynamic
power. If static power reduction is the main goal, we can modify our network
flow formulation so the cost on an edge represents the idle cycles between the
two operations on the edge. We expect that the max-cost flow solution from the
network can dramatically increase the total idle time spent by functional units.

5. EXPERIMENTAL RESULTS

Our experimental results include two major parts. We first show improved re-
sults of our simultaneous voltage assignment and binding algorithm compared
to a heuristic that separates voltage assignment from binding. We then exam-
ine the power saving potentials of multi-Vdd over single-Vdd architectures and
study the impact of different voltage levels and their combinations on power
and energy reduction. To obtain an initial scheduling result that is suitable for
voltage assignment, we adopt a heuristic algorithm from Lin et al. [1997] to
perform the resource- and time-constrained scheduling to maximize the num-
ber of extended operations. The main idea in Lin et al. [1997] is to iteratively
make an operation extended, and then use a list scheduling algorithm to vali-
date the choice. The choice is reversed if the extension violates constraints. This
heuristic will generate voltage assignment along the way. Although dramatic
increases of extended operations are observed, this algorithm does not guaran-
tee to extend the optimal number of operations for the schedule it produces.

5.1 Optimality Study

We will use dual-Vdd case to show the advantages of our algorithm. Since
there is no previous algorithm that combines voltage assignment and switching
activity reduction simultaneously, we will compare our algorithm, named opti-
mvdd, with an experimental flow sep-flow set up by ourselves. sep-flow has
two stages. First, it obtains the initial voltage assignment from the scheduling
result as done in Lin et al. [1997]. All the nodes with VddL assignment will
be extended and a corresponding new comparability graph is built. Second,
we minimize the switching activity on the new comparability graph as if we
are working for the single-Vdd case. We use the binding algorithm presented in
Chang and Pedram [1995] for this stage because the algorithm gives an optimal
binding solution to reduce switching activity without considering inter-frame
constraints. However, its resource usage may exceed the minimum required
number k. For opti-mvdd, we use the same schedule but ignore all the voltage
assignments because opti-mvdd will generate the optimal voltage assignment
and binding simultaneously. We use VddH as 1.3v and VddL as 0.8v in this
experiment.7 To simulate the DFG for switching activity estimation on the
edges, we use 1000 consecutive random input vectors.

7These two values form the best combination in works Chen and Cong [2004b] and Chen et al.
[2004], which falls into the optimal VddL/VddH ratio range as indicated in Hamada et al. [1998].
The optimal ratio should be in the range of 0.6–0.7.
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Table II. Experimental Results of Our Algorithm opti-mvdd (with Two Vdds: 1.3v and 0.8v) vs. a
Heuristic Algorithm sep-flow

Bench Total Ext’able sep-flow opti-mvdd sep-flow opti-mvdd opti-mvdd
Marks Nodes Nodes Extended Extended Power (W) Power (W) vs. sep-flow
air 422 211 79 89 4.4445 3.5015 −21.2%
chem 342 76 36 39 4.2972 3.896 −9.3%
dir 127 32 23 23 2.0245 1.743 −13.9%
honda 107 25 19 19 2.2949 1.9036 −17.1%
lee 49 15 15 15 0.7596 0.5861 −22.8%
mcm 94 10 8 8 2.7628 2.7565 −0.2%
pr 42 7 6 6 1.4163 1.4027 −1.0%
u5ml 565 183 119 124 3.3751 2.9798 −11.7%
wang 48 8 4 6 1.4583 1.3226 −9.3%
Ave. −11.8%

We carry out experiments based on a set of real-life benchmarks from
Srivastava and Potkonjak [1995], including several different DCT algorithms,
such as pr, wang, lee, and dir, and several DSP programs, such as mcm, honda,
chem, and u5ml. Both opti-mvdd and sep-flow have the power gating feature.
The initial scheduling uses the tightest latency and resource bounds. Table II
shows the results. We observe that the number of extendable nodes in the de-
sign usually is larger than the number of extended nodes. opti-mvdd always
produces larger or equal number of extended operations than sep-flow does.
The power values of opti-mvdd are consistently better than those of sep-flow
(11.8% better on average). This is due to two reasons: (1) the initial voltage
assignment of sep-flow is not optimal. Even for the cases where it extends the
maximum number of operations, its choices may not be good because there
is no switching activity considered; (2) binding of sep-flow sometimes exceeds
the resources required. For example, sep-flow uses one more multiplier than
opti-mvdd does for design lee.

5.2 Impact of Multi-Vdd on Power and Energy Consumption

To examine how multi-Vdd architecture itself helps on power/energy reduction
and gain some insights on power/energy-latency trade-offs, we carry out a series
of experiments to compare opti-mvdd with an algorithm opti-hvdd. opti-hvdd
only considers the single high Vdd. It uses the same network formulation as
presented in Section 4, but without extendable nodes (the v′-type nodes). The
nodes in Vc are still split with cost assignment C(v, vd ) = −X . It will provide an
optimal solution to minimize switching activity within the resource constraint
for the single-Vdd case. To examine different trade-off scenarios, we change our
initial scheduling to work with different latency bounds. The relaxed latency
will be (1 +α)*CriticalPath, where α is the relaxation percentage, and Critical-
Path is the minimum number of clock cycles a scheduled DFG needs without
any relaxation, that is, its smallest critical path length.8 For example, sup-
pose CriticalPath is 10 cycles for a design, α = 0.5 will relax the latency of the

8Scheduling with the tightest latency may require a large number of resources. Therefore, latency
relaxation is a common practice.
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Fig. 7. Power and energy reduction results comparing to the base case of opti-hvdd; single-Vdd is
1.3v; dual-Vdd is 1.3v/0.8v; and three-Vdd is 1.3v/0.8v/0.5v.

design to 15 cycles. We still use the heuristic scheduling algorithm from Lin
et al. [1997]. The scheduling algorithm will take the new latency constraint
and generate the schedule accordingly.

For practical reasons, the largest number of voltage combinations in our ex-
periment includes three Vdds. We first study the following voltage combination
(Voltage Set1): VddH = 1.3v, VddL1 = 0.8v, and VddL2 = 0.5v. The value of
VddH/VddL1 is almost equal to the value of VddL1/VddL2 for this set of volt-
ages. Figure 7 collects the results for single-Vdd, dual-Vdd and three-Vdd con-
figurations. The value of α is shown on the x-coordinate. The power and energy
reduction percentages are average values over the benchmarks. We use the
power and energy values of the single-Vdd + no-latency-relaxation as the com-
parison base and show the reduction percentages of other configurations over
this base case. We first observe that we can achieve power and energy reduction
of 28.1% over the base case just by doing dual-Vdd when there is no latency
relaxation. The largest power reduction for dual-Vdd is 74% when latency is
relaxed by 2X (100%). On the other hand, the energy reduction is 48% for the
same 2X relaxation. The percentage is smaller compared to that of power re-
duction because of the increased computation latency. The power curve shows
that dual-Vdd can provide larger power savings compared to trivial techniques,
such as frequency scaling. For example, if the frequency of the design is slowed
down by 50% for the single high-Vdd case, that is, the delay of each clock cycle
becomes 13ns now, and the overall computation latency is also relaxed by 2X as
a result. However, its power reduction is bounded above by 50%. Actual number
will be determined by the percentage of the dynamic power in the total power
consumption. For our adders and multipliers, this bound becomes 42%, which is
much smaller than 74% as shown in Figure 7. Next, we observe that three-Vdd
actually does not provide much power or energy gain for this set of voltages.
Figure 8 provides some hints why this is the case, where the distributions of
voltages to the operations are shown for every relaxation point. The numbers
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Fig. 8. Node numbers with different voltage assignments for Voltage Set1.

Fig. 9. Power and energy reduction results comparing to the base case of opti-hvdd; single-Vdd is
1.3v; dual-Vdd is 1.3v/1.0v; and three-Vdd is 1.3v/1.0v/0.7v.

on the bars indicate the number of operations assigned with the particular volt-
ages. The total number of operations is all the same for the different relaxation
points. The numbers are contributed from all the benchmarks.

Figure 8 shows that only a few of operations are able to execute under 0.5v.
This is because the execution time of 0.5v is much longer, especially for multi-
pliers (9 cycles). As a result, not many operations can take advantage of this
low voltage setting especially when the latency constraint is tight. With this
observation, we try another voltage combination (Voltage Set2): VddH = 1.3v,
VddL1 = 1.0v, and VddL2 = 0.7v. Figure 9 shows the results. We have two ob-
servations from Figure 9. First, the dual-Vdd case offers smaller power savings
compared to the dual-Vdd case in Figure 7, mainly because that the low Vdd of
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Fig. 10. Node numbers with different voltage assignments for Voltage Set2.

1.0v does not reduce as much power as 0.8v does. Second, three-Vdd case offers
larger power savings compared to the three-Vdd case in Figure 7 when latency
relaxation percentages are small. For larger relaxation percentages, both set-
tings offer similar power reductions. Figure 10 shows some explanations. We
can observe that our solution extends a good number of 0.7v operations be-
cause it saves 2.04X more power than 1.0v operations do. Furthermore, the
total number of extended nodes (top two portions in each bar) is larger than the
corresponding number shown in Figure 8 especially for low relaxation points.
This is because that the low-Vdd operations in Voltage Set2 use less execution
cycles than those in Voltage Set1 do, and this aspect shows stronger impact
when the latency is tight, thus enables more low-Vdd extensions to save more
power. This indicates that different voltage configurations can be selected for
different power and latency requirements.

The direct reason that latency relaxation can help on power and energy
is that the maximum number of extended operations increases significantly
along the relaxation so more operations can be executed with low Vdds. Both
Figure 8 and Figure 10 show this trend. Another reason is that the number
of resources required becomes smaller due to latency relaxation because more
operations can share common resources when the schedule becomes longer. This
is obvious from the single-Vdd curve in Figure 7 and Figure 9. To find out how
much savings are due to the multi-Vdd scheme itself, we compare the power
consumptions between opti-mvdd and opti-hvdd for each individual relaxation
point.9 Figure 11 and Figure 12 show the results for Voltage Set1 and Set2.
We can observe that multi-Vdd alone saves power significantly especially when
relaxation is larger. Energy comparison shows the same trends.

9Both opti-mvdd and opti-hvdd use the same resource numbers for each relaxation point, and
compare their power consumptions based on that relaxation point. This is different from the data
in Figures 7 and 9, where everything is comparing to a base point.
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Fig. 11. Power reduction results comparing opti-mvdd to opti-hvdd for each latency relaxation
point respectively; dual-Vdd is 1.3v/0.8v, and three-Vdd is 1.3v/0.8v/0.5v.

Fig. 12. Power reduction results comparing opti-mvdd to opti-hvdd for each latency relaxation
point respectively; dual-Vdd is 1.3v/1.0v, and three-Vdd is 1.3v/1.0v/0.7v.

To understand how much power is saved due to power gating, we collect some
data using 100% latency relaxation. Power gating can provide up to 7% power
savings for adders for certain designs. However, power gating does not offer
much savings overall and is almost negligible on average for our designs. We
believe this is due to the following reasons. First, power gating being applied
to a DFG does not have much opportunities comparing to the case where it is
applied to a CDFG (control data flow graph). For example, in a CDFG, once
a conditional branch is not taken, the functional units executing the opera-
tions specifically following that branch can be completely turned off. This is
not considered in DFG optimizations. Second, we treat power gating as a post
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processing step after dynamic power optimization as explained in Section 4.
Therefore, the optimization space is not large. Third, our SleepCycle is long be-
cause the leakage power percentage in our resources is not that significant. We
plan to study power gating in the future that will take leakage power reduction
as our first priority. We also plan to extend our work into CDFG domain.

6. CONCLUSIONS AND FUTURE WORK

In this article, we presented high-level synthesis techniques for optimizing
power and energy considering multi-Vdd assignment and switching activity
reduction simultaneously. We developed a polynomial-time optimal algorithm
and showed that our algorithm was consistently better than an optimization
flow that separated voltage assignment from functional unit binding. In addi-
tion, we studied the impact of different voltage levels and their combinations
on power and energy reduction. We also studied power-latency tradeoffs and
power-gating potentials. Our results showed significant power and energy re-
duction compared to the scheme where only a single high Vdd was used. Fu-
ture works include CDFG extension with a focus of leakage power reduction.
Problem formulations with chained operations (in a single control step) and
pipe-lined FUs are also under consideration.
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