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Abstract—In this paper, we target field-programmable gate
array (FPGA) performance optimization using a novel binary
decision diagram (BDD)-based synthesis paradigm. Most previous
works have focused on BDD size reduction during logic synthesis.
In this paper, we concentrate on delay reduction and conclude
that there is a large optimization margin through BDD synthesis
for FPGA performance optimization. Our contributions are three-
fold: 1) we propose a gain-based clustering and partial collapsing
algorithm to prepare the initial design for BDD synthesis for better
delay; 2) we use a technique called linear expansion for BDD
decomposition, which, in turn, enables a dynamic programming
algorithm to efficiently search through the optimization space for
the BDD of each node in the clustered circuit; and 3) we consider
special decomposition scenarios coupled with linear expansion
for further improvement on the quality of results. Experimental
results show that we can achieve a 30% performance gain with
a 22% area overhead on the average compared to a previous
state-of-the-art BDD-based FPGA synthesis tool, namely, BDS-
pga. Compared to DAOmap, we can achieve a 33% performance
gain with only an 8% area overhead. Compared to the ABC
mapper, we can achieve a 20% performance gain with only an 8%
area overhead.

Index Terms—Binary decision diagram (BDD), field-
programmable gate array (FPGA), logic decomposition.

I. INTRODUCTION

THE field-programmable gate array (FPGA) has become
increasingly popular throughout the past decade. The

cost pressures, changing requirements, and short design win-
dows favor increasingly more programmable chip solutions. An
FPGA chip consists of programmable logic blocks, program-
mable interconnections, and programmable input/output pads.
The lookup table (LUT)-based FPGA architecture dominates
the existing programmable chip industry, in which the basic
programmable logic element is a K-input LUT (K-LUT). A
K-LUT can implement any Boolean function of up to K
variables. Similar to the application-specified integrated circuit
design flow, the FPGA design process consists of the system-
level design, the logic synthesis, and the physical design. Many
algorithms have been proposed to facilitate the automatic de-
sign process of FPGAs to improve performance, area, or power.
In this paper, we present a new logic synthesis algorithm for
FPGAs for circuit delay reduction, which is based on binary
decision diagrams (BDDs).
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The conventional FPGA logic synthesis flow starts with a
logic optimization phase, which is followed by a gate decompo-
sition phase and then a technology mapping phase. During the
course of logic optimization, each node of the network can be
simplified using a two-level logic optimizer such as ESPRESSO
[1], which is based on the don’t cares extracted from the net-
work or provided by the user [2], [3]. After logic optimization,
gate decomposition algorithms such as the tech_decomp in
SIS [4] and the dmig in [5] are always carried out to decompose
large-fanin gates into small-fanin gates so that every gate of
the network is with a fanin number ≤ K, where K is the
input size of the LUT in the target FPGA. Then, a technology
mapping [6]–[10] algorithm is used to convert the circuit into a
functionally equivalent network comprised only of logic cells
implementable in LUTs. The design is finished by placing
these cells on an FPGA chip and programming the connections
among them.

Although the traditional logic optimization methodology is
very successful on AND/OR-intensive circuits, its performance
on XOR-intensive circuits is far from satisfactory (see [11]). In
[11], the authors presented BDS, a logic optimization system
based on BDD decomposition techniques. By exploring the
structure of a BDD, BDS is able to identify not only AND/OR

decompositions, but also XOR/multiplexer (MUX) decomposi-
tions. BDS has been successfully applied to FPGA designs in
[12]. The logic synthesis system presented in [12], namely,
BDS-pga, first collapses the network using a maximum fanout-
free cone (MFFC)-based eliminating method and then recur-
sively cuts BDDs in the middle for LUT decomposition. After
each cut, it tries to further reduce the number of mapped LUTs
by swapping variable orders in the BDD. BDS-pga has shown
significant improvements on both area and delay for some
circuits [12] compared to SIS + Flowmap [8]. Another BDD-
based synthesis technique is introduced in [13], where BDD
resynthesis is applied to improve timing. After placement, some
timing critical parts of the circuit are selected, resynthesized,
and then replaced.

One of the drawbacks of BDS, as mentioned in [11], is
its inability to consider delay optimization, because it cannot
properly balance the factoring tree used in their algorithm. To
optimize the delay, BDS-pga uses a delay resynthesis approach.
After logic synthesis, BDS-pga finds out critical paths and
partially collapses these paths. Then, it uses the ESPRESSO [1]
algorithm to optimize the collapsed nodes and redecomposes
the optimized nodes for delay optimization. This method is
similar to what SIS [4] does for delay optimization. However,
because the delay optimization is not integrated within the
main logic synthesis algorithm, it does not always perform
well, as shown in our experiments. The decomposition method
used in [13] is based on a timing-driven reordering heuristic.
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Although it is useful, this heuristic does not show a significant
improvement on the experimental results (6%, as mentioned in
their paper).

In this paper, we propose a BDD-based FPGA logic synthesis
system, called the delay-driven BDD (DDBDD), targeting de-
lay optimization. We use the unit delay model in our algorithm.
The depth of the mapped circuit is used to estimate the delay
or performance of the mapped circuit. The depth of a node in
a circuit is the maximum number of nodes between this node
and one primary input. The depth of a primary input is zero.
The mapping depth of a node is the depth of the LUT covering
this node in the mapped circuit. We first introduce a gain-based
partial collapsing algorithm that considers delay, and then, we
present a dynamic programming algorithm for synthesizing
each collapsed node to optimize the delay. Our algorithm uses
BDDs to represent node functions, and it uses linear expansion
for BDD decomposition, which is a generalized decomposition
technique of all the different decompositions used in BDS, to
synthesize the circuit. Based on linear expansion, our dynamic
programming algorithm chooses the proper decompositions of
a BDD to optimize delay. We also consider special decomposi-
tion scenarios that can be coupled with linear expansion for fur-
ther improvement on the quality of results. Experimental results
show that we can achieve a performance gain of up to 30% with
a 22% area overhead compared to BDS-pga. Compared to
DAOmap [6], we can achieve a 33% performance gain with
only an 8% area overhead. Compared to the ABC mapper [7],
we can achieve a 20% performance gain with only an 8% area
overhead.

In Section II, we introduce some related terminologies and
preliminaries. Section III presents our algorithm in detail. Ex-
perimental results are shown in Section IV, and we conclude
this paper in Section V.

II. DEFINITIONS AND PRELIMINARIES

It is assumed that readers are familiar with the basic concepts
of Boolean functions, Boolean networks [14], and BDDs [15].
We provide a brief review of related concepts and define several
terminologies used in this paper.

A. Boolean Functions and BDDs

A completely specified Boolean function with n inputs and
one output is a mapping f : Bn → B, where B = {0, 1}. The
support of Boolean function f , which is denoted supp(f), is the
set of variables on which f explicitly depends. A Boolean net-
work is a directed acyclic graph (DAG), whose nodes represent
Boolean functions. For complete definitions of these terms, we
refer readers to [14]. In this paper, the term Boolean function is
used for a completely specified Boolean function.

BDDs were first introduced by Lee [16] and then popularized
by Akers [17]. In [15], Bryant introduced the concept of re-
duced ordered BDDs (ROBDDs) and a set of efficient operators
for their manipulation and proved the canonicity property of
ROBDDs. Formally, a BDD is a DAG, representing a Boolean
function, with two terminal nodes 1 and 0. Each nonterminal
node has an index to identify an input variable of the Boolean

Fig. 1. (a) BDD for the Boolean function: f = a · b ∨ b · c, and the variable
inside each node is the input variable associated with the node. (b) Sub-BDD(v)
of the BDD in (a).

function and has two outgoing edges, which are called the
0-edge and the 1-edge. In the BDD drawings in this paper, we
use solid lines to represent 1-edges and dotted lines to represent
0-edges. The depth of a BDD is the number of input variables of
the BDD. An ROBDD is a BDD where input variables appear
in a fixed order in all the paths of the graph and no variables
appear twice in a path, and every node represents a distinct
function. In this paper, we refer to ROBDDs as BDDs. Fig. 1(a)
is a BDD example.1 The size of a BDD can be reduced by
complement edges, which point to the complementary form of
the functions. To maintain canonicity, a complement edge can
only be assigned to the 0-edge [18].

For simplicity, it is assumed that all the discussions in this
paper are within the context of a BDD. The root of a BDD is
the node without any incoming 0-edge or 1-edge, such as node a
in Fig. 1(a). Let N denote the set of nonterminal nodes of the
BDD, and let P denote the set of all paths from the root to
the terminal nodes of the BDD. Given a variable x, let N (x)
denote the set of nodes associated with x. Given a node u, let
V (u) denote the variable associated with node u, let T (u) [or
E(u)] denote the node adjacent to u by the 1-edge (or 0-edge)
outgoing from u, and let P(u) denote all the paths from u to
the terminal nodes. In a BDD, each variable has a level, and
each node also has a level, which is the same as its associated
variable’s level. In Fig. 1(a), the levels of variables a, b, and c
are 0, 1, and 2, respectively. Let us define them formally.
Definition 1 (Variable Level): The level of an input variable

x, i.e., l(x), is defined as l(x) = 0 if x is a root variable
and l(x) = max{l(V (u)) + 1|u ∈ N ∧ (x = V (T (u)) ∨ x =
V (E(u)))} otherwise.

Definition 2 (Node Level): The level of a nonterminal node
u, i.e., l(u), is defined as l(u) = l(V (u)). The level of a
terminal node is the depth of the BDD.
Definition 3 (Cut): Given a BDD, a cut at level i is a partition

of the nodes so that all nodes with a level less than or equal to i
belong to one side of the partition (upper side of cut i), whereas
the other nodes belong to the other side (lower partition of cut i).

Definition 4 (Cut Set): Given a BDD, the cut set at level i is
the set of nodes from the lower side of cut i that have incoming
edges from the upper side of cut i.

1For simplicity, we will not draw the arrows at the end of the edges and the
numbers by the edges indicating their types (0-edge or 1-edge) in the rest of our
paper.
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Fig. 2. Algebraic AND decomposition with 1-dominator. (a) Principle of
algebraic AND decomposition with 1-dominator. Node v is a 1-dominator, and
the Boolean function F is decomposed as F = f · g. (b) Real circuit using
algebraic AND decomposition.

Fig. 3. Linear expansion of a BDD. (a) Generic BDD. (b) Linear expansion
of the BDD. (c) Decomposition of all components using 1-denominator.

Definition 5 (Sub-BDD): Given a BDD, the sub-BDD at
node u ∈ N , i.e., sub-BDD(u), is the BDD consisting of all
nodes and edges that are reachable from u in the original BDD.

For Fig. 1(a), sub-BDD(v) is shown in Fig. 1(b).

B. Functional Decomposition

Node decomposition reexpresses a node function by a logi-
cally equivalent composition of two or more functions. In this
section, we introduce several BDD-based decomposition tech-
niques that are used in this paper. In [19], Karplus introduced
the 1-dominator and the 0-dominator. Basically, in a BDD with-
out complement edges, a 1-dominator (0-dominator) is a node
that belongs to every path from the root to terminal node 1 (0).
A 1-dominator (0-dominator) leads to an algebraic AND (OR)
decomposition (see Fig. 2 for an example of a 1-dominator).
In [11], Yang and Ciesielski introduced the concept of the x-
dominator. In a BDD with complement edges, an x-dominator
is a node that is contained in every path from the root to the
terminal nodes. As shown in [11], an x-dominator corresponds
to an XNOR decomposition. In [11], it was also shown that if
a BDD has two nodes covering all paths from the root to the
terminal nodes, then it has a MUX decomposition. All these
decompositions are special cases of linear expansion [20].
Fig. 3 shows the idea of linear expansion. In Fig. 3(a), S =
{v1, v2, . . . , vk} is a cut set of the BDD; in Fig. 3(b), each BDD
Fi is formed from F by replacing the nodes in S to terminal
node 0, except the node vi. Obviously, any path from the root

Fig. 4. BDD example with five cuts.

Fig. 5. Linear decomposition example. (a) BDD with five variables. (b) Linear
decomposition of BDD with cut2.

to terminal node 1 must include one node from S. If the path in-
cludes the node vi, then this path also appears in the BDD Fi in
Fig. 3(b). This means that all the paths from the root to terminal
node 1 are covered by BDDs in Fig. 3(b). It is also easy to know
that for any BDD in Fig. 3(b), any path from the root to terminal
node 1 must be covered by the BDD in Fig. 3(a). Therefore,
the BDD in Fig. 3(a) is equal to the summation of BDDs in
Fig. 3(b). For each BDD in Fig. 3(b), we apply the AND decom-
position to get Fig. 3(c). In our algorithm, we try linear ex-
pansions on all possible cuts for a BDD using a dynamic
programming algorithm and pick the cut that produces the best
result. Fig. 4 shows a BDD with five cuts, and Fig. 5 shows
an example of applying linear expansion at cut2. The BDD in
Fig. 5(a) is decomposed using linear expansion at cut2 (with
cut set {e, d, 1}), and Fig. 5(b) shows the decomposition. In this
example, f3 = 1 is not shown in Fig. 5(b). For BDD c3, node c
is eliminated because both T (c) and E(c) are terminal node 0.

Even though the linear expansion is very powerful, we did
not find previous synthesis algorithms using it. In this paper,
we make the first attempt to synthesize circuits with linear
expansion. We will introduce more definitions. In Fig. 3, the
BDD F is decomposed into a set of small BDDs. Furthermore,
each small BDD, such as c1 or f1, will also be decomposed
using linear expansion for synthesis. The BDDs c1, c2, . . . , ck

are not sub-BDDs, as defined in Definition 5. Each of them is
actually related to a root node, a cut level, and a cut set node.
Definition 6 (Extension of Definition 4): Given a BDD, the

cut set of u ∈ N with regard to level i, i.e., CS(u, i), is the cut
set of sub-BDD(u) at level i.
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In Fig. 5(a), CS(a, 0) = {b, c}, CS(a, 2) = {d, e, 1}, and
CS(a, 4) = {1, 0}.

Definition 7 (Extension of Definition 5): Given a node u ∈
N , a nonnegative integer i, and another node v ∈ CS(u, i),
the sub-BDD rooted at u with respect to v at depth i, i.e.,
Bs(u, i, v), is a modification of sub-BDD(u), where all nodes
in the lower side of cut i, except CS(u, i) are deleted from sub-
BDD(u). All nodes in CS(u, i) are replaced to terminal node
0, except the node v, which is replaced to terminal node 1.

For the BDD in Fig. 5, c1 = Bs(a, 2, e), f1 = Bs(e, 0, 1),
c2 = Bs(a, 2, d), f2 = Bs(d, 1, 1), and c3 = Bs(a, 2, 1). The
BDD F in Fig. 5(a) is equal to the sub-BDD Bs(a, 4, 1).
Generally, a BDD is equal to its sub-BDD Bs(r, n− 1, 1),
where r is the root of the BDD, and n is the depth of the BDD.

III. BDD SYNTHESIS FOR DELAY OPTIMIZATION

In this section, we present our BDD-based logic synthe-
sis algorithm for delay optimization. Several key techniques
are used, such as node clustering, linear expansion, dynamic
programming, and various dominator-based decompositions.
Algorithm 1 is a global overview of our algorithm. In the
beginning, the nodes of the Boolean circuit are clustered and
collapsed into supernodes based on node depths and whether
there are gains to collapse them. The node collapsing reduces
the number of nodes in the circuit, increases the functional
complexity of each node, and gives us more room to optimize
a node. After the node collapsing, we process the supernodes
in a topological order from the primary inputs to the primary
outputs. Whenever we process a node, the mapping depths of
its fanins are known. Our dynamic programming algorithm uses
mapping depth information and linear expansion to synthesize
the node to optimize its fanout mapping depth. While we
are processing a node, various special decompositions, such
as XNOR and MUX decompositions, are also identified. The
details will be presented in the following sections.

Algorithm 1: Overall algorithm
Input: A Boolean network

K: the input size of an LUT
Output: Synthesized circuit
Collapse the Boolean network into a set of supernodes using
Algorithm 2;
Sort the nodes in a topological order from primary inputs to
primary outputs;
for each node in order do

Collect the mapping depth information of its fanins;
Perform Algorithm 3 to synthesize the node;
Record the node minimum mapping depth;

end

A. Clustering and Partial Collapsing

Clustering and partial collapsing is a critical step for a logic
synthesis system. It can help remove logic redundancies, such
as those caused by local reconvergence [11]. Similar to pre-
vious approaches [4], [11], our clustering and partial collaps-
ing algorithm is based on an iterative elimination framework.

Fig. 6. In this example, both gates b and c fan out to gate a, so a is the out
gate, and b and c are the in gates in Algorithm 2. The output depths of gates b
and c are 2 and 1, respectively. We prefer to merge b into a instead of merging
c into a, because it is more likely to reduce the output depth of a.

In [4], SIS uses the number of literal counts as the cost function
to guide the clustering; whereas in [11], BDS uses the number
of BDD nodes as guidance. The BDD-based collapsing method
provides results that are similar to the literal counting method
but runs much faster [20]. The cost function in our algo-
rithm considers both the number of BDD nodes and the node
depths.

Algorithm 2 shows how our partial collapsing method works.
Basically, our algorithm runs for multiple iterations. In each
iteration, a set of mergable node pairs is first collected. Then,
nodes are merged in decreasing order of merging gains. The
algorithm terminates when there is no feasible node pair that
can be found. If a node is changed by a merging operation,
the following merging operations regarding this node are can-
celed in the current iteration. In the algorithm, the function
mergable(in, out) tells us whether we should merge node in
into node out. The function mergable first makes copies of
BDDs of nodes in and out, and then, it merges copied BDDs.
Let n denote the size of the merged BDD and n1 and n2 denote
the sizes of the BDDs of nodes in and out before merging,
respectively. The function mergable returns true only if n
is smaller than a size bound (200 in our experiments) and
n < (n1 + n2) ∗ (1 + α), where α is a parameter that can be
adjusted, and α = 3 in our experiments. This way, we do not
merge two nodes if the BDD size after merging increases by a
large portion. In the algorithm, we define

gain(x, y)

=




(n1+n2−n)∗
(
1+β∗ do(x)

dix(y) +γ/no(x)
)

, if n1+n2≥n

(n1+n2−n)/
(
1+β∗ do(x)

dix(y) +γ/no(x)
)

, if n1+n2 <n

where do(x) is the output depth of node x, dix(y) is the maxi-
mum depth of fanins of node y, no(x) is the number of fanouts
of node x, and β and γ are user-controlled parameters. For
simplicity, we use x and y to represent in and out, respectively.
From the formula, the larger the depth do(x) of a fanin node
x is, the larger the gain of merging it with one of its fanouts
will be. The intuition of this rule can be explained using Fig. 6.
Another heuristic rule used in our algorithm is to give a higher
preference to a fanin node with a smaller number of fanouts
no(x) because a node can be removed from the network if it
has no fanouts after merging. The smaller the fanout number is,
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the less duplication it will incur due to merging. The function
mergeBDD(in, out) in the algorithm merges node in into
node out and removes the fanin and fanout relation between
them. The values of α, β, and γ in our experiment are 3, 0.5, and
0.5, respectively. We tried some experiments in which values
are better for these parameters. However, there is no obvious
winner. The node size bound is only for the runtime/quality
tradeoff. The larger the node size is, the greater the runtime
becomes. According to Theorem 1, the runtime for synthesizing
one BDD is proportional to the square of the BDD node size.
We tried node sizes in steps of 50 and found out that 200 is a
reasonable limit for runtime purposes.

Algorithm 2: Clustering and partial collapsing algorithm
Input: A Boolean network
Output: Partially collapsed circuit
Local: pq: a priority queue based on gains of merging two
nodes, and it is in descending order of gains
begin

done← 0;
repeat

for each fanin–fanout pair (in, out) do
if mergable(in, out) then

g = gain(in, out);
pq.push(g, in, out);

end
if pq is empty then

done← 1;
while pq is not empty do

(g, in, out)← pq.top();
pq.pop();
if either in or out is marked then

jump to the next iteration;
mark the node out;
mergeBDD(in, out);
if in has no fanouts then

remove in from the network;
end
unmark all nodes;

until done = 1
end

B. Dynamic Programming Algorithm to Synthesize
One BDD for Delay Optimization

In this section, we synthesize a supernode of the collapsed
network. Our algorithm uses a BDD to represent this node and
recursively decomposes the BDD to form a Boolean network.
During the decomposition, our algorithm tries to optimize
the network mapping depth. The algorithm produces both the
decomposed (synthesized) network and its mapping depth. Let
us look at an example first. For the BDD in Fig. 4, there are
five possible cuts, and each cut produces a different synthesis
result. In our algorithm, we try all five cuts and choose the
one producing the smallest mapping depth. Fig. 5(b) shows
the decomposition produced by cut2 in Fig. 4. Obviously, we
need to know the mapping depths of sub-BDDs before we can
calculate the mapping depth of the BDD F in terms of cut2.

Fig. 7. All depth-0 sub-BDDs of the BDD in Fig. 5(a) and three depth-1
sub-BDDs.

To get the mapping depths of sub-BDDs, we recursively apply
a dynamic programming algorithm. Our algorithm starts with
the smallest sub-BDDs and processes sub-BDDs in increasing
order of their depths.
1) Main Algorithm: Algorithm 3 shows our dynamic-

programming-based algorithm. The size of the BDD is first
minimized by using a BDD reordering algorithm [18]. After re-
ordering, the algorithm processes sub-BDDs in increasing order
of their depths, from depth 0 to depth n− 1. For each depth l,
the algorithm visits all BDD nodes. For each BDD node u, the
depth of sub-BDD(u) is n− l(u), its maximum possible cut
level is n− l(u)− 1, and the algorithm generates the cut set
CS(u, l) by the procedure enumerateCS (see Algorithm 4)
only if l ≤ n− l(u)− 1. For each cut node v ∈ CS(u, l),
the algorithm produces a sub-BDD Bs(u, l, v). For the sub-
BDD Bs(u, l, v), the algorithm tries all cuts from 0 to l − 1,
produces a mapping depth for each cut (by calling the function
delayDecompose), chooses the smallest mapping depth as the
mapping depth of Bs(u, l, v), and saves the decomposition that
produces the smallest mapping depth for this sub-BDD. The
algorithm ignores those cuts with a large number of cut nodes
(larger than thresh, which is 15 in our experiments) because
large cuts generally do not produce good decompositions. Fig. 7
enumerates all depth-0 sub-BDDs of the BDD in Fig. 5(a) and
three depth-1 sub-BDDs. Whenever the algorithm processes a
depth-i sub-BDD, all sub-BDDs with depths less than i have
been processed, so all the information needed for decomposing
the depth-i sub-BDD is known. For example, in Fig. 5(b), the
depth of sub-BDD f1 is 0; the depth of f2 is 1; and the depths
of c1, c2, and c3 are all 2. At the moment the algorithm starts
to process BDD F in Fig. 4, the sub-BDDs that BDD F is
decomposed into at every cut have already been processed, and
we are able to choose the best cut for decomposing F and the
corresponding mapping depth. Since Bs(r, n− 1, 1) is actu-
ally the BDD of the supernode, delay(Bs(r, n− 1, 1)) is the
mapping depth of the synthesized network, and the synthesized
network can be constructed by recursively applying saved best
decompositions for Bs(r, n− 1, 1) and sub-BDDs it decom-
posed into.
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Algorithm 3: Logic synthesis algorithm for one BDD
Input: inputDelay : inputDelay(x) is the mapping
depth of the input variable x
Output: Synthesized network and its mapping depth
Local: tmpDelay, bestDelay: temporary variables
Global: thresh: a number to prune away large cuts

delay : delay(Bs(u, l, v)) is the mapping depth of sub-
BDD Bs(u, l, v);

begin
reduce the size of the BDD by a reordering algorithm;
n← number of input variables of the BDD;
for l = 0 to n− 1 do

for each u ∈ N do
if l(u) + l > n− 1 then

jump to the next iteration;
enumerateCS(u, l);
for each v ∈ CS(u, l) do

bestDelay ← +∞;
if l = 0 then

bestDelay ← inputDelay(V (u));
for j = 0 to l − 1 do

if |CS(u, j)| > thresh then
jump to the next iteration;

tmpDelay ← delayDecompose(u, l, v, j);
if tmpDelay < bestDelay then

bestDelay ← tmpDelay;
end
delay(Bs(u, l, v))← bestDelay;
save the best decomposition for Bs(u, l, v);

end
end

end
produce the synthesized network by applying best decompo-
sitions for Bs(r, n− 1, 1) and its related sub-BDDs and
set the network mapping depth to be delay(Bs(r, n− 1, 1)),
where r is the root of the BDD;
end

Algorithm 4 produces the cut set CS(u, l). If l = 0, the
cut set is the set of nodes adjacent to u joined by the edges
outgoing from u, so CS(u, l) = {T (u), E(u)}. If l > 0, the cut
set CS(u, l) can be constructed from the cut set CS(u, l − 1),
as shown in the algorithm. For a cut node v ∈ CS(u, l − 1),
if l(v) > l(u) + l, the node v is at the lower side of cut l for
sub-BDD(u), so v ∈ CS(u, l); otherwise, T (v) ∈ CS(u, l),
and E(v) ∈ CS(u, l). In Fig. 5(a), for example, CS(a, 0) =
{b, c}. l(c) = 2 > l(a) + 1 = 1 implies that c ∈ CS(a, 1), and
l(b) = l(a) + 1 implies that T (b) = 1 ∈ CS(a, 1) and E(b) =
c ∈ CS(a, 1). Therefore, CS(a, 1) = {c, 1}.

Algorithm 4: enumerateCS
Input: u : a BDD node

l: the cut level
Output: CS(u, l)
begin

if l = 0 then
CS(u, l)← {T (u), E(u)};

else

Fig. 8. Boolean network generated according to linear expansion at cut2 for
the BDD in Fig. 4. Nodes c1, f1, c2, f2, and c3 represent corresponding
Boolean networks of sub-BDDs. (a) Network right after the linear decompo-
sition. (b) One network after the large fanin OR gate is decomposed.

CS(u, l)← ∅;
for each v ∈ CS(u, l − 1) do

if l(u) + l < l(v) then
CS(u, l)← CS(u, l) ∪ {v};

else
CS(u, l)← CS(u, l) ∪ {T (v), E(v)};

end
end

end
end

2) Producing the Mapping Depth for a Sub-BDD: This
section illustrates how the function delayDecompose
(Algorithm 5) works using linear expansion. The function
delayDecompose first generates a set of AND gates with
known mapping depths from the linear decomposition [see
Fig. 8(a)], which are all fanins of an OR gate, and then, it uses a
bin-packing-based algorithm to decompose the OR gate [see
Fig. 8(b)] and produces the mapping depth of the decomposition.

Algorithm 5: delayDecompose
Input: u, l, v : specify sub-BDD Bs(u, l, v)

j : the cut level
Output: the mapping depth of the linear decomposition at

cut level j for sub-BDD Bs(u, l, v)
begin

produce a set of AND gates using linear expansion for sub-
BDD Bs(u, l, v) at cut j;
group these AND gates according to their mapping depths;
sort groups in increasing order of mapping depths;
for each group in order do

d← mapping depth of the group;
for each gate in the group do

x← number of inputs of the gate;
create a box with size x;

end
solve the bin-packing problem;
if there is only one bin and the current group has the
largest mapping depth then

jump out of the loop;
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Fig. 9. Getting AND gates for Bs(u, l, v) using linear expansion at cut j.

end
for each bin do

create an OR gate with gates in the bin as inputs;
create a buffer and put it into the group with mapping

depth d + 1;
end

end
delay ← the mapping depth of the group with largest

mapping depth plus one;
return delay;

end

Given a sub-BDD Bs(u, l, v) and a cut at j, the linear
expansion decomposes the sub-BDD into a summation of
several AND gates. Each AND gate corresponds to a node
w ∈ CS(u, j), and the inputs of this AND gate are sub-
BDDs Bs(u, j, w) and Bs(w, l(u) + l − l(w), v) [please refer
to Figs. 5(b) and 9], and the input mapping depth of the
AND gate is the maximum mapping depth of its two inputs.
Since we process sub-BDDs in increasing order of their depths,
the mapping depths of both Bs(u, j, w) and Bs(w, l(u) + l −
l(w), v) are known at this time. If w = v, then the AND gate
is degenerated to have only one input Bs(u, j, v), and the other
input is eliminated because it is equal to logic true. There are
two cases in which a cut node w′ ∈ CS(u, j) does not have a
corresponding AND gate in the decomposition.

1) The first case happens when l(w′) > l(u) + l and w′ �= v;
in this case, w′ is also a cut node of CS(u, l), which
means that w′ is converted into terminal node 0 in
Bs(u, l, v) (see Fig. 10).

2) The second case happens when v �∈ CS(w′, l(u) + l −
l(w′)), as shown in Fig. 9; in this case, the sub-BDD
starting from w′ (the shaded area) is collapsed into logic
0, so we do not need to consider it.

In a linear-expansion-based decomposition, all the AND gates
fan out to an OR gate, and our target is to decompose this
large-input OR gate into K-input OR gates and then map all
the gates to cells implementable by K-LUTs to achieve a small
mapping depth. This problem can be formulated as a bin-
packing decomposition problem [21], [22]. In general, the goal
of bin packing is to find the minimum number of bins into
which a set of boxes can be packed. In this paper, each box
represents an AND gate, and the size of the box is the number
of inputs to the AND gate. We use an algorithm similar to [22].
This algorithm is able to produce the optimum mapping depth

Fig. 10. Cut node without a corresponding AND gate in the decomposition.
In (a), CS(a, 0) = {b, d}, CS(a, 1) = {c, d}, and Bs(a, 1, c) is the BDD g
in (b). Let us decompose g using the cut at level 0 in (b). Since d ∈ CS(a, 0)
and l(d) > l(a) + 0, the cut node d is replaced to terminal node 0 in sub-
BDD g, and it has no corresponding AND gate in the decomposition. Therefore,
the sub-BDD is decomposed according to node b, the other node in CS(a, 0).
(a) BDD. (b) Cut node without a corresponding AND term in linear
decomposition.

Fig. 11. BDD in this example is decomposed into an OR gate with four AND

gates as inputs according to linear expansion. The numbers inside gates are
mapping depths.

for K ≤ 6 [22]. For simplicity, we assume that each buffer is an
AND gate with only one input. First, the AND gates are grouped
according to their mapping depths, with the gates having the
same mapping depth belonging to the same group. Then, the
algorithm processes the groups in increasing order of their
mapping depths; for each group, the algorithm processes the
gates in decreasing order of their input sizes and packs each gate
into the first bin (the size of a bin is K) that has enough room.
Each bin in a processed group with mapping depth d becomes a
gate of the group with mapping depth d + 1, and the input size
of this new gate is one. The algorithm terminates when there is
only one bin left in the group with the highest mapping depth,
and the mapping depth of the sub-BDD is the mapping depth of
this group plus one.

Let us illustrate how an OR gate with many AND gates as
inputs is decomposed using the bin-packing algorithm. Fig. 11
shows the linear decomposition result for a BDD at a cut with
four cut nodes. According to linear expansion, the OR gate has
four AND gates (g1, g2, g3, and g4) as inputs, and each AND gate
is a two-input gate. The mapping depths of gates g1 and g2 are
both 2, the mapping depth of gate g3 is 3, and the mapping depth
of gate g4 is 4. In this example, let us assume that K = 4. In our
algorithm, we first group these gates according to their mapping
depths. Gates g1 and g2 belong to the group with mapping depth
2, gate g3 belongs to the group with mapping depth 3, and gate
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Fig. 12. Using bin packing to decompose an OR gate (step by step). The
numbers inside the gates are gate mapping depths. (a) Creation of three groups
for four gates according to mapping depths. (b) After processing the group
with mapping depth 2. (c) After processing the group with mapping depth 3.
(d) After processing the group with mapping depth 4.

g4 belongs to the group with mapping depth 4 [see Fig. 12(a)].
We start by processing the group with mapping depth 2. For
this group, there are two boxes, both with size 2, and they can
be packed into one bin. Therefore, we create one bin for this
group. Then, we create a buffer with mapping depth 3 and put
it into the group with mapping depth 3 [see Fig. 12(b)]. As
we can see in Fig. 12(b), we also create an OR gate for each
bin, and the inputs of the OR gate are the gates inside the bin.
After the group with mapping depth 2, we process the group
with mapping depth 3, which has two gates, one having two
inputs and the other having only one input. One bin is used to
cover this group, and we create another buffer with mapping
depth 4 and put it into the group with mapping depth 4 [see
Fig. 12(c)], and so on and so forth. After we processed the group
with mapping depth 4, our algorithm successfully decomposed
the OR gate, as shown in Fig. 12(d). Finally, the mapping depth
produced by the linear expansion for the BDD in Fig. 11 at the
specified cut is 5.
3) Special Decompositions: In our algorithm, we also check

conditions under which various special decompositions can be
applied. If any one of these conditions is satisfied, the cor-
responding special decomposition is applied instead of linear
expansion. We prefer special decompositions to linear expan-
sion for these cases because these special decompositions use
less sub-BDDs during decomposition. OR decomposition uses
two sub-BDDs instead of the three used by linear expansion;
MUX decomposition uses three sub-BDDs instead of four; and
XNOR decomposition uses two sub-BDDs instead of four. In
this section, Bs(u, l, v) and j have the same meaning as in the
previous sections. The conditions under which Bs(u, l, v) has
special decompositions are listed as follows.

1) AND decomposition: This is a special case of linear
expansion, where there is only one AND gate.

2) OR decomposition2: The condition for an OR decompo-
sition is that |CS(u, j)| = 2 and v ∈ CS(u, j). Let us

2Even though the OR decomposition can be identified by finding the AND

decomposition of the complemented BDD (DeMorgan’s rule), it is much easier
to find the OR decomposition according to its structural property instead of
complementing every sub-BDD and figuring out the AND decomposition.

Fig. 13. Special decompositions. For the BDD in Fig. 4, (a) the OR decom-
position can be applied to sub-BDD Bs(a, 1, c) at cut 0, and Bs(a, 1, c) =
Bs(a, 0, c) ∨ Bs(b, 0, c), and (b) the MUX decomposition can be applied to
sub-BDD c1 = Bs(a, 2, e) at cut 0, and c1 = (g1 ∧ g2) ∨ (g1 ∧ g3), where
g1 = Bs(a, 0, c), g2 = Bs(c, 0, e), and g3 = Bs(b, 1, e).

assume that CS(u, j) = {v, w}. In this case, Bs(u, l, v)
can be decomposed as Bs(u, j, v) ∨ Bs(w, l(u) + l −
l(w), v)) because w is a 0-dominator of Bs(u, l, v). In
Fig. 13(a), Bs(a, 1, c) is a sub-BDD of the BDD in
Fig. 5(a). Since CS(a, 0) = {b, c}, Bs(a, 1, c) has an
OR decomposition at cut 0, and it is decomposed as
Bs(a, 0, c) ∨ Bs(b, 0, c).

3) MUX decomposition: The condition for a MUX decom-
position is |CS(u, j)| = 2. Let CS(u, j) = {w1, w2}. In
this case, Bs(u, l, v) can be decomposed as (Bs(u, j,
w1) ∧ Bs(w1, l(u) + l − l(w1), v)) ∨ (¬Bs(u, j, w1) ∧
Bs(w2, l(u)+ l − l(w2), v)). In Fig. 5, CS(a, 0)={b, c},
so the sub-BDD Bs(a, 2, e) has a MUX decomposition
at cut 0, and it is decomposed as (Bs(a, 0, c) ∧
Bs(c, 0, e)) ∨ (¬Bs(a, 0, c) ∧ Bs(b, 1, e)).

4) XNOR decomposition: The condition for an XNOR decom-
position is that |CS(u, j)| = 2 and the Boolean functions
of w1 and w2 are complementary to each other, where
CS(u, j) = {w1, w2}. In this case, Bs(u, l, v) can be de-
composed as Bs(u, j, w1)⊕Bs(w1, l(u) + l − l(w1), v)).
XNOR decomposition is a special case of MUX
decomposition.

C. Complexity of the Algorithm

Let n denote the number of input variables and N denote
the size of the BDD. The runtime and memory space of our
algorithm is shown by the following theorem. Since the BDD
size is limited in our algorithm (up to 200 in our experiments)
and the number of input variables is small (less than 20 for most
cases), the algorithm is still very fast.
Theorem 1: If the size of a BDD is N and it has n input vari-

ables, then the runtime of synthesizing the BDD is O(n2N2),
and the algorithm uses O(nN2) memory space.

Proof: Since each sub-BDD is determined by a root node,
a cut level, and a node that corresponds to terminal node 1 of the
sub-BDD (see Definition 7), the total number of sub-BDDs is
limited by nN2. As a result, the memory space needed by our
algorithm is O(nN2). In the algorithm, we prune away the large
cuts (cut size larger than thresh, which is 15 in our experi-
ments), so the function delayDecompose takes const time.
Furthermore, the number of possible cuts for a sub-BDD is at
most n. Therefore, the runtime of our algorithm is O(n2N2).�
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TABLE I
IN THIS TABLE, THE ROWS Delayw ARE THE CIRCUIT MAPPING

DEPTHS PRODUCED BY DDBDD WITH COLLAPSING, AND THE

ROWS Delaywo ARE THE CIRCUIT MAPPING DEPTHS

PRODUCED BY DDBDD WITHOUT COLLAPSING

TABLE II
MAPPING DEPTHS REDUCED BY OUR BDD DECOMPOSITION ALGORITHM

COMPARED TO BDS-PGA ON 103 COLLAPSED NODES

IV. EXPERIMENTAL RESULTS

Our experiments are carried out on a desktop personal com-
puter with a 3-GHz Intel Xeon central processing unit. The
operating system is Red Hat Linux 8.0, and we use g++ to
compile our programs. In the experiments, we use the circuit
benchmarks provided by the authors of BDS-pga [12], which
are used in [12] as well. The correctness of the synthesized cir-
cuits by our algorithm is verified using SIS. In this section, the
first two experiments show the effectiveness of our collapsing
algorithm and the BDD decomposition algorithm, and the last
two experiments show the comparison of DDBDD with BDS-
pga, SIS + DAOmap [6], and ABC [7]. In our experiments, we
assume that the input size of an LUT is five, and the mapping
depth is the number of LUT levels in the final mapped circuit.

To illustrate the effectiveness of our collapsing algorithm for
mapping depth optimization, we compare the circuit mapping
depths produced without the collapsing step and the mapping
depths with the collapsing step. According to the experiments,
our algorithm with collapsing always produces circuits with
better or equal mapping depths. The collapsing is very effective
mainly due to the following reasons: 1) It can remove some
logic redundancies such as those caused by local reconver-
gence, and 2) it makes an individual node larger than before,
thus producing more opportunities to find better decomposi-
tions. Table I shows the mapping depth comparison results on
some of the circuits.

To illustrate the effectiveness of our dynamic-programming-
based BDD decomposition algorithm, we perform the follow-
ing experiment. We first run our collapsing algorithm on all the
benchmark circuits and choose the collapsed nodes with a BDD
size larger than 50, and then, we run both our BDD decomposi-
tion algorithm and the BDD decomposition algorithm in BDS-
pga on these nodes and compare the mapping depths. There are
103 such nodes, and our decomposition algorithm performs
uniformly better than the decomposition algorithm of BDS-pga
in terms of mapping depth. Table II shows the statistics. For all
103 nodes, our algorithm reduces the mapping depths by one
level for 69 nodes, by two levels for 14 nodes, by three levels
for ten nodes, by four levels for five nodes, and by five levels for
one node. The sum of mapping depths produced by our algo-
rithm is 292 for all these nodes, and the sum of mapping depths

TABLE III
COMPARISON RESULTS OF OUR ALGORITHM WITH BDS-PGA,

SIS + DAOMAP, AND ABC. IN THIS TABLE, COLUMNS “DELAY”
REPRESENT DEPTHS OF THE MAPPED CIRCUITS, AND COLUMNS “AREA”

REPRESENT THE NUMBER OF LUTS OF THE MAPPED CIRCUITS

by BDS-pga is 444. These results show that our BDD decom-
position technique is effective for mapping delay minimization.

Table III shows the comparison of our algorithm with BDS-
pga, SIS + DAOmap, and ABC. In the table, the data of
BDS-pga are from [23]. BDS-pga employs the MFFC-based
collapsing algorithm, which is followed by a heuristic BDD
decomposition method. For SIS, the benchmark circuits are first
optimized using the scripts script.rugged and script.delay3; the
optimized circuits are then decomposed into circuits consisting
only of two-input gates by the commands tech_decomp -a 1000
-o 1000 and dmig -k 2; after the decomposition, the command
daomap -k 5 is used to cover the circuits by LUTs, and the
results are reported. For ABC, we run five passes of commands
choice;fpga before the command ps. In this table, the last row,
i.e., Norm, is for the normalized values of the other three meth-
ods compared to DDBDD. The average runtime of DDBDD is
less than 1 min per circuit. Compared to our algorithm, on the
average, BDS-pga produces circuits with 30% more mapping
depth and 22% less area, SIS + DAOmap produces circuits with
33% more mapping depth and 8% less area, and ABC produces
circuits with 20% more mapping depth and 8% less area.

To illustrate the scalability of our algorithm, we perform a
comparison of DDBDD and BDS-pga on the ten largest Micro-
electronics Center of North Carolina (MCNC) combinatorial
benchmarks. Table IV shows the results. The circuits are first
mapped by both DDBDD and BDS-pga. To see the impact of
mapping depth reduction, we then feed the circuits into VPR
[24] to run placement and routing. We use an LUT of size five,
a cluster of size ten, and length-4 wire segments in the experi-
ment. VPR is run in the timing-driven mode. We use a 100-nm
technology node, which is the same as that used in [25]. We first
run VPR to obtain routing results with the minimum number of
routing tracks for each circuit and then apply additional 20%

3We only apply script script.rugged to circuit C5315 because the script
script.delay fails to run on it.
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TABLE IV
COLUMNS DEPTH SHOWS THE MAXIMUM DEPTH OF THE MAPPED CIRCUIT, COLUMNS LUTS SHOW THE NUMBER OF LUTS, COLUMNS DELAY

SHOW THE MAXIMUM DELAY ACCORDING TO VPR, AND COLUMNS RUNTIME ARE THE RUNTIME OF THE PROGRAM. UNDER THE

COLUMN COMPARISON, EACH FIELD SHOWS THE VALUE OF THE BDS-PGA RESULT DIVIDED BY THE DDBDD RESULT

routing tracks and rerun routing to get the final results, as com-
monly practiced [24]. To have a fair comparison, for each cir-
cuit, we apply the same routing track count for both DDBDD
and BDS-pga (we pick the smaller track count required between
DDBDD and BDS-pga). For example, if it was determined that
a circuit had a minimum track count of 10, then both BDS-pga
and DDBDD will be run on an FPGA with a track count of 12
(i.e., 10 + 20%). The maximum delay of each circuit is col-
lected. Table IV shows that on the average, BDS-pga produces
circuits with 95% more mapping depth (or 25% more delay
after placement and routing) with 22% less area. Although the
runtime of DDBDD is still reasonable, it is several times larger
than BDS-pga mainly due to the collapsing procedure, which
runs for many iterations. We will reduce the runtime in our
future work.

We would like to mention that DDBDD does not work well
for datapath-intensive circuits. The largest MCNC benchmark
circuits are mainly such type of circuits. On these circuits, the
performance of DDBDD is not good compared to DAOmap and
the ABC mapper. For example, DDBDD maps those circuits
in Table IV with 8% more mapping depths and 34% more area
compared to DAOmap on the average. However, we believe that
datapath circuits are not the right circuits to evaluate the quality
of an FPGA technology mapping algorithm. Modern FPGA
chips (such as Xilinx and Altera FPGA chips) have dedicated
logic blocks for datapath elements, such as multipliers. Given
an FPGA design, a commercial software first infers datapath log-
ic elements from the design. After inference, most of the data-
path elements are mapped, using a template-based method, onto
dedicated logic blocks. Then, the rest of the circuit, mostly ran-
dom logic, is mapped using a technology mapping algorithm.
Therefore, it is more accurate to use random logic circuits to
verify the quality of an FPGA technology mapping algorithm.

Normally, datapath circuits are all well designed with good
and regular structures. BDD-based technology mapping algo-
rithms build BDDs for the entire network and then decom-
pose BDDs to form a new network. Therefore, BDD-based
technology mapping algorithms tend to destroy the original
circuit structure. As a result, BDD-based algorithms are usually
not performing well for datapath circuits. For random logic
circuits, there are no fixed best circuit structures. BDD-based
methods can find good structures using a BDD size reduction

TABLE V
COMPARISON RESULTS OF OUR ALGORITHM WITH BDS-PGA,

SIS + DAOMAP, AND ABC ON NINE CONTROL CIRCUITS

algorithm by reordering the variable orders. Based on these
analyses, we further compare our algorithm with BDS-pga, SIS
+ DAOmap, and ABC on nine control circuits from the MCNC
benchmark [26]. Table V shows the comparison results. The
average runtime of our algorithm on these circuits is less than
1 s per circuit. In the table, we again observe that DDBDD
outperforms other algorithms on mapping depth. In general,
we show that our solution provides a significant amount of
performance gain, which makes the tradeoff on area worthwhile
if the design goal is for high performance.

V. CONCLUSION

In this paper, we have presented a BDD-based logic synthe-
sis algorithm to optimize the performance of FPGA designs.
We carried out gain-based circuit collapsing and dynamic-
programming-driven BDD decomposition to minimize the cir-
cuit mapping depth. BDD decomposition was mainly carried
out through linear expansion and was further enhanced by spe-
cial decomposition cases when necessary. Our algorithm was
delay-centric overall. In particular, the dynamic programming
approach was designed to efficiently search through all the pos-
sible decompositions in a BDD to achieve the minimal mapping
depth among these decompositions. We showed that we were
able to achieve a 30% performance gain with a 22% area over-
head compared to previous state-of-the-art BDD-based logic
synthesis algorithms for FPGAs. Our future work will consider
area reduction techniques during BDD decomposition. We can
also explore different variable reordering techniques based on
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the timing criticality of BDD nodes so that noncritical BDD
nodes can be optimized toward area reduction.
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