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The Input vector control (IVC) technique is based on the observation that the leakage current in a

CMOS logic gate depends on gate input state, and a good input vector is able to minimize leakage

when the circuit is in sleep mode. The gate replacement technique is a very effective method to

further reduce the leakage current. In this article, we propose a fast heuristic algorithm to find

a low-leakage input vector with simultaneous gate replacement. Results on MCNC91 benchmark

circuits show that our algorithm produces 14% better leakage current reduction with several or-

ders of magnitude speedup in runtime for large circuits compared to the previous state-of-the-art

algorithm. In particular, the average runtime for the ten largest combinational circuits has been

dramatically reduced from 1879 seconds to 0.34 seconds.
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1. INTRODUCTION

CMOS technology scaling is the main force that drives the semiconductor
industry. Together with the power-supply voltage scaling, it renders chip
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performance substantially improved while power consumption remains
reasonable. However, to maintain high performance with lower supply volt-
age, transistor threshold voltage also needs to be scaled down. Lowering the
threshold voltage exponentially increases the leakage current of the device. It
is reported that 25% total energy is dissipated by leakage current in a 90 nm
Itanium processor core [Naffziger et al. 2005].

Leakage reduction techniques have been proposed previously on device, cir-
cuit, and system levels. Dual threshold voltage (Vt) transistors [Wei et al. 1998]
and body biasing [Kobayashi and Sakurai 1994] techniques change threshold
voltage, and effectively reduce leakage. However, these techniques need pro-
cess changes. Meanwhile, stack transistors can effectively reduce leakage. A
two-transistor stack can reduce leakage by an order of magnitude as compared
to a single transistor [Ye et al. 1998]. Based on this theory, sleeping transis-
tor Johnson et al. 1999a and gated-Vdd [Mutoh et al. 1995] techniques were
introduced to reduce the leakage power.

Input vector control (IVC) is another way to efficiently reduce leakage
power [Halter and Najm 1997; Ye et al. 1998; Rao et al. 2003]. Given a cir-
cuit, an optimal input vector exists to minimize the leakage current for this
circuit. However, finding such an optimal input vector is NP-hard [Johnson
et al. 1999b]. For large circuits with deep levels, IVC becomes less effective
because the controllability of internal nodes is lower. A gate replacement tech-
nique can be used to improve the controllability. It can also be used to further
reduce leakage.

Most of the proposed heuristics for IVC become slow for large circuits. The
fastest implementation, in Rao et al. [2003], is O(n2), where n is the number of
gates in the circuit. Considering and gate replacement, the computation com-
plexity further increases. Existing methods for gate replacement are formulated
assuming the input vector is known, and that gate replacement is carried out
after input vector generation. However, these two techniques energetically in-
teract. Without consideration of their interaction, the leakage reduction results
are obviously not optimal.

In this article, we present an O(n) heuristic algorithm to solve the IVC and
gate replacement problems simultaneously. A dynamic-programming-based al-
gorithm is used for making a fast evaluation of input vectors, as well as for
replacing gates. Our contributions can be summarized as follows.

—We propose a link-deletion-based decomposition method for circuits which is
much more effective for leakage reduction than previous tree decomposition
algorithms.

—We propose a linear-time dynamic programming algorithm that produces the
optimum input vector with simultaneous gate replacement for tree circuits.

—We propose an iterative method that can very quickly produce the low-leakage
input vector and gate replacement solution for a circuit.

—Our algorithm is 11 times faster than the pervious fastest algorithm for input
vector generation [Rao et al. 2003], on average; in that paper gate replace-
ment was not considered.
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Table I. Leakage Current

of a NAND2 Gate

INPUT Leakage (nA)

00 37.84

01 100.30

10 95.17

11 454.50

Data obtained by simulation in

Cadence Spectre using 0.18 μm

process.

—Our algorithm produces better results than the previous state-of-the-art IVC
algorithm with gate replacement [Yuan and Qu 2005] with several orders of
magnitude speedup in runtime.

In Section 2, we will briefly review existing methods to solve the IVC problem
and the current approach for gate replacement. Section 3 presents our fast
leakage reduction heuristic with simultaneous gate replacement. The results
are shown in Section 4, and we will conclude this article in Section 5.

2. PRELIMINARIES AND RELATED WORK

2.1 Input Vector Control

Input vector control (IVC) methods were first proposed in Halter and Najm
[1997] and Ye et al. [1998]. This technique is based on the observation that
the leakage current in a CMOS logic gate is dependent on the gate input state
(see Table I of Yuan and Qu [2005]). However, given a circuit, it is NP-hard to
find a vector that minimizes the leakage [Johnson et al. 1999b]. Both a SAT-
based algorithm [Aloul et al. 2002] and an integer-linear-programming-based
algorithm [Gao and Hayes 2004] were proposed previously to find exact solu-
tions. A faster algorithm for finding exact solutions was presented in Chopra
and Vrudhula [2006, 2004]. In Chopra and Vrudhula [ibid.] a balanced min-cut
algorithm was used to partition the circuits, then pseudo-Boolean enumeration
was used to find input vectors for small blocks. However, these techniques for
finding exact solutions are not practical for large circuits. A random search al-
gorithm was proposed by Halter and Najm [1997], in which randomly chosen
vectors were applied to the circuit and that vector which gave the least observed
leakage value was reported. It was reported that a random search over 10000
vectors gave over 99% confidence that less than 0.5% of the vector population
would have leakage lower than the minimum leakage value observed from the
random search [Halter and Najm 1997; Rao et al. 2003]. An O(n2) algorithm
was proposed in Rao et al. [2003]. Based on the controllability idea from circuit
testing, that paper was able to get a result very close to that of an extensive
random search method, with much lower computational cost compared to other
proposed methods.

In Yuan and Qu [2005], a genetic algorithm was proposed to find the input
vector with gate replacement. This algorithm is carried out in the following
steps. Firstly, the circuit is decomposed into tree circuits, secondly, a dynamic
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Fig. 1. Gate replacement example.

programming algorithm is applied to every tree circuit, followed by a heuristic
gate replacement algorithm; finally, the tree circuits are connected by a genetic
algorithm. The tree decomposition method used in this algorithm decomposes
the circuit into a large number of small trees, which makes the dynamic pro-
gramming algorithm less effective as compared to the genetic algorithm. This
algorithm requires a long runtime for large circuits due to the nature of the
genetic algorithm. For example, its average runtime on the ten largest combi-
national MCNC91 circuits is 1879 seconds. These ten circuits are not actually
very large, and the largest has only 4000 gates. So the genetic algorithm is not
scalable to large circuits with multiple millions of gates.

2.2 Gate Replacement

When paths in circuits become deeper, IVC techniques become less effective
because gates with deep levels are harder to affect with the input vector. One
way to solve this problem is the internal signal-control method proposed in
[Abdollahi et al. 2004]. With a small delay overhead, it can reduce more leakage
current. This method modifies gates using the stack transistor idea. It was
assumed that every gate could be modifies to insert a control. Together with
its SAT-based algorithm for input vector generation, the method could be very
expensive for solving the problem for a large circuit.

The internal signal-control method needs to modify gates. On the other hand,
Yuan and Qu [2005] reduced gate leakage by gate replacement only using gates
available in the library. In Yuan and Qu [ibid.], an optimum input vector is first
produced by a dynamic programming algorithm, followed by a heuristic gate
replacement algorithm. However, this separation of input vector generation
and gate replacement is not able to produce an optimum solution because the
output of a gate may be changed after replacement (in Figure 1, G∗ outputs 1
when Sleep = 1), which changes the leakage currents of gates to which it fans
out. In this article, these two methods are considered simultaneously through a
dynamic-programming-based technique. The advantage of our method is that
we are able to find the minimum-leakage input vector for tree circuits, with
simultaneous gate replacement. For general circuits, we are able to achieve
better leakage reduction results as compared to the separate approach used
in Yuan and Qu [2005].

The gate replacement technique replaces one gate G(�x) by another
G̃(�x, Sleep), where �x is the input vector at G such that the following holds
[Yuan and Qu 2005].

(1) G̃(�x, 0) = G(�x) when the circuit is active (Sleep = 0).

(2) G̃(�x, 1) has less leakage than G(�x) when the circuit is in standby mode
(Sleep = 1).
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Algorithm 1. Overall Algorithm

Input {G1, . . . , Gn} : a circuit with n gates;
Ni : the number of iterations to run;

Output: �Vopt : an input vector producing small leakage;

Convert the circuit into trees;

Assign initial values to dangling inputs;

for i = 1 to Ni do
Perform dynamic programming algorithm for each tree;

Adjust the dangling assignment;

CheckOscillations;

if solutions converge then
break;

end

Figure 1 shows how to replace a NAND2 gate. According to the leakage data
(see Table I), the leakage of NAND2 with the vector 11 is 454.50nA, and it is
reduced to 94.87nA after the NAND2 gate is replaced by a NAND3.

3. SIMULTANEOUS INPUT VECTOR GENERATION
WITH GATE REPLACEMENT

In this section, we present our algorithm for simultaneous input vector gen-
eration with gate replacement. Several key techniques are used, such as link
deletion, dangling input assignment, dynamic programming, and oscillation
checking. Algorithm 1 is a global overview of our algorithm. In the beginning,
the circuit is transformed into large trees. This transformation is made by delet-
ing connections among gates until every gate fans out to at most one other gate.
Removing connections in a circuit obviously creates many dangling inputs (a
dangling input of a gate is the nonprimary input which has no fanin gate). In
the second step, we assign initial values to these dangling inputs.1 The value of
a dangling input is always equal to the estimated output value of its fanin gate
before deleting the connections. For example, if the estimated output of gate
G1 is 1 as in Figure 2(b), the value of the dangling input of G3 is 1. Then we
iteratively perform the dynamic programming algorithm on the trees we cre-
ated. Each iteration computes the best input vector with regard to the current
dangling assignment. The best input vector of the current iteration is used to
update the dangling assignment for the next iteration. During each iteration,
we check whether the input vectors computed by different iterations oscillate,
and resolve this problem if it happens. When two consecutive iterations pro-
duce the same best input vector, the algorithm converges and terminates. If the
algorithm does not converge, it will terminate after Ni iterations. We find that
Ni = 20 is good enough for practical problems. Details will be presented in the
following subsections.

1Hereafter, a value assignment of all dangling inputs is abbreviated as a dangling assignment.
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Fig. 2. Step-by-step illustration of our algorithm on the circuit C17: (a) the original C17 circuit;

(b) tree circuits after deleting some connections between P1 and G0, G1 and G3, and G2 and G5;

(c) we assign values 0, 1, and 1 to dangling inputs of gates G0, G3, and G5, respectively; (d) the

current optimum input vector (0, 0, 0, 1, 1) and corresponding gate outputs; (e) the dangling assign-

ments have been changed to 0, 1, and 0 for gates, G0, G3, and G5, respectively; (f) the new best

input vector (0, 0, 0, 1, 0), which is the optimum input vector of circuit C17.

3.1 An Example

Figure 2 provides an example of running our algorithm on a simple MCNC91
benchmark circuit C17 (Figure 2(a)). In the first step, we transform the circuit
into trees by temporally deleting connections between P1 and G0, G1 and G3,
and G2 and G5 (Figure 2(b)). After deletion, gates G0, G3, and G5 have dangling
inputs. In the second step, we assign values 0, 1, and 1 to the dangling inputs
of gates G0, G3, and G5, respectively (Figure 2(c)). Since the circuit has been
transformed into trees, we can apply a dynamic programming algorithm to de-
termine its minimum leakage and the corresponding input vector (Figure 2(d)).
With this input vector, we are able to evaluate all the gates and calculate their
outputs. We use the outputs of gates to update values of dangling inputs for the
next iteration. In Figure 2(e), the values of dangling inputs of gates G0, G3, and
G5 have been changed to 0, 1, and 0, respectively. With the new dangling as-
signment, we run the algorithm another time and get the new best input vector
(Figure 2(f)). This new input vector produces the same dangling assignment as
the previous iteration, and the algorithm converges and terminates. The input
vector calculated by our algorithm in this example happens to be the optimum
solution for the circuit C17.

3.2 Link Deletion

At the beginning of our algorithm, we transform the given circuit into trees by
deleting connections between gates so that every gate fans out to at most one
other gate. If a gate G fans out to k other gates G1 . . . Gk , we pick a best gate Gi
according to some heuristic rules, and delete connections between all the other
k − 1 gates and G. The heuristic rules determining whether Gi is better than
G j are presented as follows.
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—If the longest path between Gi and one primary output (denoted as LP (i)) is
longer than that of G j , Gi is better than G j . The intuition behind this rule
is that the longer the path, the larger the number of gates affected by this
gate, and it is more appropriate to keep intact the connections between this
gate and its inputs.

—If LP(i) = LP( j ) and gate Gi fans out to more gates than does G j , then Gi is
better than G j .

—Otherwise, we make a random decision.

In Figure 2(a), G1 fans out to both G2 and G3. We can see that LP(2) =
LP(3) = 2, but G2 has two fanouts (G4 and G5) while G3 has only one, so we
delete the connection between G1 and G3 (Figure 2(b)).

Note that our link-deletion-based transformation is different from the tree
decomposition method in Yuan and Qu [2005], in which every gate with multiple
fanouts is the root of a decomposed tree. Their method produces a large number
of trees, and the size of each tree is very small. In our algorithm, only the
primary outputs of the circuit are the roots of trees. A small number of gates
in a tree makes the dynamic programming algorithm on trees very ineffective,
because the interactions among trees are more important in this case. In Yuan
and Qu [2005], the average number of gates in a tree for the benchmark circuits
is 6, while our number is 72.

3.3 Initial Dangling Assignment

In our algorithm, the value of a dangling input is always equal to the output of
the corresponding fanin gate in the original circuit. We design three heuristics
to estimate the gate outputs at the beginning of our algorithm.

—Random Assignment. We randomly assign a value as the output of a gate.

—Probability Estimation. In this method, we assume that the occurrence of
every input combination of a gate has the same probability. With this as-
sumption, we are able to calculate the probabilities of the different output
values of a gate. For example, in Figure 2, the gate G1 is a NAND gate, and
the probability of producing 1 is 0.75, which is larger than that of producing
the value 0. So, the estimated output of G1 is 1.

—Minimum-Leakage Estimation. In this method, we apply the dynamic pro-
gramming algorithm to the unconverted DAG circuit. The difference here is
that a gate G may fan out to multiple gates G1 . . . Gk , and these gates may
require different input values from G. In this case, we count the number n1

of gates requiring the value 1, and the number n0 of gates requiring the value
0, then compare n1 with n0. If n1 > n0, the output of G is set to the value 1.
If n1 < n0, the output of G is set to the value 0. If there is a tie, we make a
random assignment.

Our experiments indicate that the last method is superior. So we present our
experimental results using the third heuristic in this article.
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Table II. Local Variables in Algorithm 2

Variable Definition

N (i) the number of inputs of gate Gi

I (i, j ) the j th input of gate Gi

Out(i, �x) the output of gate Gi with its local input

vector �x
OutR (i, �x) the output of gate Gi with its local input

vector �x when Gi is replaced

L(i, �x) the leakage current of gate Gi with its local

input vector �x
LR (i, �x) the leakage of the replaced gate of Gi with

local input vector �x
Rep(i, z) indicate whether to replace gate Gi when its

output is z
LK (i, z) minimum total leakage of the subtree rooted

at gate Gi when its output is z
�V (i, z) the input vector producing LK (i, z)

�x j the value of the j th bit of vector �x

3.4 Optimum Algorithm for Tree Circuits with Simultaneous Gate Replacement

Given a tree circuit, the dynamic programming algorithm is able to find the
input vector that produces minimum leakage. In the algorithm, the gates are
sorted topologically, and evaluated one-by-one according to this order. Whenever
we evaluate a gate G, we consider all combinations of its input values and find
the minimum leakage LK (G, 0) of the subtree rooted at the gate G when G’s
output is 0, the minimum leakage LK (G, 1) of the same subtree when G’s
output is 1, and the corresponding optimum input vectors. After evaluating all
gates, we are able to find the minimum leakage of the tree and the optimum
input vector. This part of the algorithm is the same as that used in Yuan and
Qu [2005].

We extend the algorithm so that it produces the optimum input vector for a
tree circuit when we also carry out simultaneous gate replacement. The details
of our algorithm are presented in Algorithm 2. Table II explains local variables
used in our algorithm. In line 8, LK is the minimum total leakage of subtrees
rooted at the inputs of gate Gi, and LK(I (i, j ), �x j ) is the minimum leakage
of the subtree rooted at the j th input of gate Gi; in line 12, the input vector
producing minimum leakage for the subtree rooted at gate Gi is generated by
combining theinput vectors of Gi ’s fanin trees. In the algorithm, thevariable
valveRep is used to control the area and delay of the final circuit. Replacing
gates increases the area and delay because one gate is always replaced by an-
other gate with more transistors. The larger the variable valveRep, the smaller
the number of gates replaced, thus the smaller the area and delay overhead
due to gate replacement. When doRep = 0, the algorithm is able to produce a
minimum-leakage vector without considering gate replacement; when line 14 is
removed, our algorithm produces the minimum-leakage vector for a tree circuit
with gate replacement. Details of the optimality are provided by the following
theorems.
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Algorithm 2. Algorithm Producing Optimum Input Vector with Gate Replacement for
a Tree Circuit

Input: {G1, . . . , Gn} : gates in the tree circuit sorted
topologically

doRep : replace gate when doRep = 1
valveRep : control gate replacement

Output: �Vopt : optimum input vector
�R : replace gate Gi if �Ri = 1

Local: N (i), I (i, j ), Out(i, �x), OutR (i, �x), L(i, �x),

LR (i, �x), Rep(i, z), LK (i, z), �V (i, z) (see Table II)

1 begin
2 for i = 1 to n do
3 if Gi is a primary input then
4 LK (i, 0) = 0; �V (i, 0) = 0;

5 LK (i, 1) = 0 ; �V (i, 1) = 1;

6 continue;

7 for each valid input combination �x of Gi do
8 LK = ∑N (i)

j=1 LK (I (i, j ), �x j );

9 z = Out(i, �x);

10 if L(i, �x) + LK < LK (i, z) then
11 LK(i, z) = L(i, �x) + LK ;

12 �V (i, z) = ∪N (i)
j=1

�V (I (i, j ), �x j );

13 Rep(i, z)=No;

14 if doRep and LR (i, �x) × valveRep < L(i, �x) then
15 z = OutR (i, �x);

16 if LR (i, �x) + LK < LK (i, z) then
17 LK(i, z) = LR (i, �x) + LK;

18 �V (i, z) = ∪N (i)
j=1

�V (I (i, j ), �x j );

19 Rep(i, z)=Yes;

20 end
21 end
22 if LK (n, 0) > LK (n, 1) then
23 �Vopt = �V (n, 0);

24 else
25 �Vopt = �V (n, 1);

26 end
27 Calculate �R in reverse topological order;

28 end

THEOREM 3.1. For any gate Gi (1 ≤ i ≤ n) and z ∈ {0, 1}, let Ni denote the
number of inputs of Gi, and G g j (1 ≤ j ≤ Ni) denote the j th fanin gate of Gi. If
we do not consider gate replacement, there must exist an input vector �x of Gi such
that Gi outputs z with input vector �x and LK (i, z) = L(i, �x) + ∑Ni

j=1 LK (g j , �x j ),
where �x j is the value of the j th bit of �x.
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PROOF. For gate Gi and its desired output value z, there must exist an input
vector �x such that the total leakage of the subtree rooted at Gi is minimized
and Gi outputs z with input vector �x. The total leakage of the subtree rooted
at Gi is the summation of the leakage of Gi itself and the total leakages of all
subtrees rooted at fanin gates of Gi, thus it is obvious that LK(i, z) = L(i, �x) +∑Ni

j=1 LK(g j , �x j ).

With this theorem, we directly have the following corollary.

COROLLARY 3.2. When gate replacement is ignored (doRep = 0), Algorithm 2
produces the minimum-leakage vector for a tree circuit.

In the case of considering gate replacement, we have the following results
which are similar to Theorem 1 and Corollary 1.

THEOREM 3.3. For any gate Gi (1 ≤ i ≤ n) and z ∈ {0, 1}, let Ni denote
the number of inputs of Gi, and G g j (1 ≤ j ≤ Ni) denote the j th fanin gate
of Gi. With simultaneous gate replacement, there must exist two input vec-
tors �x1 and �x2 such that LK(i, z) = min{L(i, �x1) + ∑Ni

j=1 LK(g j , �x1 j ), LR(i, �x2) +
∑Ni

j=1 LK(g j , �x2 j )}, Gi outputs z with input vector �x1, and the replaced gate of
Gi outputs z with input vector �x2.

PROOF. Following a similar approach as used in Theorem 1.

COROLLARY 3.4. Algorithm 2 produces the minimum-leakage vector for a tree
circuit with simultaneous gate replacement when line 14 is removed.

Since the maximum number of inputs of a gate in a circuit is constant, the
number of combinations of input values of a gate is also constant. It is easy to
know that our algorithm is linear in each iteration. In the algorithm, every gate
uses a constant number of resources,2 so the space complexity of the algorithm
is also linear to the number of gates. In all, we have the following theorem,
considering runtime and space complexity.

THEOREM 3.5. The runtime of Algorithm 2 is O(n), and the memory usage is
also O(n), where n is the number of gates in the circuit.

PROOF. In this theorem, we assume that the maximum fanin number of a
gate in the technology library is N f , which is a constant. In Algorithm 2, the
runtime of lines 8, 12, and 18 is O(N f ), and all other lines between line 8 and 19
have unit runtime. The loop starting from line 7 has at most 2N f iterations, and
the loop starting from line 2 has n iterations, so the total runtime is O(N f 2N f n).
Since N f is constant, the runtime of the algorithm is O(n). It is obvious that
the space complexity of the algorithm is O(n).

2Note that �V (i, z) needs linear space, but exists in our algorithm for the purpose of simplifying the

illustration. In our implementation, this vector is only constructed for the root gate at the end of

the algorithm by backtracing the entire tree.
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Fig. 3. Inverted logic insertion between G0 and G2, G3.

3.5 Oscillation

Our algorithm converges and terminates after a few iterations for most cases.
Occasionally, we observe oscillations. The oscillation happens when some in-
put vectors produced by our algorithm repeat after several iterations. In our
algorithm, each dangling assignment produces an input vector, and each input
vector determines a new dangling assignment. The oscillation happens if and
only if the dangling assignments repeat, so we check the oscillation by checking
whether the dangling assignments in two nonadjacent iterations repeat.

Let �D(i) denote the characteristic vector of the dangling assignment in iter-
ation i of our algorithm, each bit of �D(i) is the estimated output of a gate with
multiple fanouts in iteration i. The oscillation happens if �D(i) = �D( j ) for some
i + 1 < j (if i + 1 = j , the algorithm converges). The equation �D(i) = �D( j ) can
be checked efficiently by hashing each vector into an integer, and comparing
the vectors only when their hash values are equal. We design two heuristics to
solve the oscillation problem.

—Inverted Logic Insertion. In this method, we add inverted logics to the out-
puts of some gates. In Figure 3(a), gate G0 has output 0, and gates G1, G2,
and G3 require 0, 1, and 1 from gate G0 to achieve smallest leakage values.
Figure 3(b) illustrates how to add an OR gate between gate G0 and its fanouts,
so that all requirements are satisfied.3 The OR gate in this example acts as
an inverter when Sleep = 1, and does not change the functionality of the
circuit when Sleep = 0. In our algorithm, adding an inverted logic to the
output of a gate G is equivalent to splitting a tree circuit into two subtree
circuits: the subtree rooted at gate G, and the rest of the original tree circuit.
To avoid excessive area or delay increases due to the inverted logic insertion,
we only add inverted logics to those gates with more than Iv fanouts (Iv is a
user-controllable parameter). Inverted logic insertion perturbs the original
circuit. Therefore it helps to remove the oscillation.

—Dangling Assignment Perturbation. If �D(i) = �D( j ) for some i + 1 < j , we
perturb the assignment of �D( j ) so that our algorithm is able to jump out
of the repeating loop. We compare �D( j − 1) and �D( j ) bit-by-bit, and change
those bits of �D( j ) that are different with the corresponding bits of �D( j − 1).
Assume the lth bits of �D( j ) and �D( j −1) are different, let n1 = ∑ j

k=i+1
�D(k)l ,

and n0 = j − i − n1.4 The new value of the lth bit of �D( j ) is determined

3If the output of G is 1, we add an AND gate.
4Let �D( j )l denote the lth bits of �D( j ).
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as follows: If n0 > n1, �D( j )l = 0; if n0 < n1, �D( j )l = 1; otherwise �D( j )l is
assigned randomly.

Since the second method does not change the circuit, we apply it first. If the
oscillation still exists, we apply the first heuristic. However, these techniques
do not always resolve oscillation problems or guarantee converge. As we can
see from Algorithm 1, our algorithm terminates after Ni iterations if these
techniques fail.

3.6 Complexity of Overall Algorithm

The runtime of overall algorithm is summarized by the following theorem.

THEOREM 3.6. The runtime of Algorithm 1 is O(nN 2
i ), where n is the number

of gates in the circuit and Ni is the number of iterations in the algorithm.

PROOF. Clearly, the algorithm consists of Ni iterations. In each iteration, the
runtime of the dynamic programming algorithm is O(n). The dangling input
adjustment is a breadth-first search of the circuit, and its runtime is also O(n).
To check oscillations, we need to compare gate outputs in the current iteration
with those in previous iterations, which takes at most O(nNi) time. As a result,
the runtime of Algorithm 1 is O(nN 2

i ).

According to experiments, the algorithm converges and terminates in 5 iter-
ations on most circuits, which makes our algorithm much faster than stated in
the previous theorem. In all our experiments, we set Ni to 20,5 which means
our algorithm is effectively a linear algorithm.

4. EXPERIMENTAL RESULTS

Our experiments are carried out on a SUN Ultra Sparc-10 server, and we use
g++ to compile our programs. We follow the same synthesis flow [Sentovich
et al. 1992] as in Yang and Qu [2005] and use the same MCNC91 combina-
tional benchmark circuits [Yang 1991]. We use leakage data provided by Yuan
and Qu [2005]. The purpose of using combinational circuits is for comparison.
Our algorithm can also be used on sequential circuits, the results of which are
similar to those on combinational circuits.

Our results are compared to those of two other algorithms [Rao et al. 2003;
Yuan and Qu 2005]. In Rao et al. [2003], the authors introduced a fast heuristic
method to find a good input vector (with no gate replacement considered). We
skip our gate replacement step (doRep = 0 in Algorithm 2) to test the runtime
of our input vector generation only. Our experiments indicate that our method
is about 11 times faster than their approach, with slightly better leakage re-
duction. Yuan and Qu [2005] proposed a divide-and-conquer (DC, for short)
algorithm with gate replacement, and showed better results as compared to
the previous approaches. We will show that our algorithm is able to produce
better leakage reduction compared to the DC algorithm, with several orders of
magnitude speedup in runtime.

5 Ni = 20 is enough to get a good result according to our experiments.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 2, Article 34, Pub. date: April 2008.



A Fast Input Vector Generation Algorithm for Leakage Power Reduction • 34:13

Table III. Comparison with Rao et al. [2003]

Ckt TmSvo Imprvo TmSvp Imprvp Spdup

C1355 1269 6.47% 161.04 1.15% 7.88

C1908 533 −2.67% 63.15 2.11% 8.43

i10 730 4.54% 35.24 −0.44% 20.7

C2670 824 −0.05% 22.55 0.2% 36.56

C432 566 −3.57% 247.67 −1.49% 2.2

C499 1264 −1.88% 1098.22 0.14% 1.15

i5 919 7.83% 69.83 7.16% 13.16

C5315 809 −0.38% 24.48 −1.87% 33

C6288 1461 0.88% 458.81 2.97% 3.18

C7552 172 −0.94% 34.03 0.72% 5.06

C880 311 −0.68% 134.52 0.68% 2.31

my add 533 1.48% 1318 −1.19% 0.40

average 783 0.92% 305.6 0.845% 11.18

In this table, TmSvo is the runtime savings of our algorithm against the ran-

dom search; TmSvp is the runtime savings of Rao et al. [2003] against the

random search; Imprvo is the leakage improvement of our algorithm against

random search; Imprvp is the leakage improvement of Rao et al. [2003]

against random search; Spdup is the runtime speedup of our algorithm

against Rao et al. [2003].

Table III shows our comparison data with Rao et al. [2003]. In this exper-
iment, we report the speedup of our algorithm against the random search
method over 10000 input vectors for each circuit. For circuits with less than
13 inputs, we report our results against an exhaustive search method over the
input vector space. All these parameters are the same as used by Rao et al.
[2003], so that we have a fair comparison. As we can see from Table III, our
algorithm runs 11 times faster on average than the heuristic method in Rao
et al. [2003], on average.

To compare with the DC algorithm in Yuan and Qu [2005], we run our al-
gorithm on 69 MCNC91 benchmark circuits provided by Yuan and Qu. For 26
small circuits with 22 or fewer primary inputs, we report our results against the
exhaustive search. For 43 large circuits, we report our results against random
search over 10000 input vectors. These parameters are the same as those of
Yuan and Qu [2005]. The data of the DC algorithm was collected on the same
type of machine we use (SUN Ultra Sparc-10 server). Table IV shows the aver-
age results for small, large, and all circuits. For 26 small circuits, our algorithm
produces results 8% better than the DC algorithm; for 43 large circuits, our
algorithm produces results 6% better than the DC algorithm with several or-
ders of magnitude speedup; for all circuits, our algorithm outperforms the DC
algorithm by 6.6%. In Table IV, the column imprvbest shows the best leakage
improvement over random search by setting valveRep = 1 in Algorithm 2. As
shown in the table, we can achieve 10% more leakage improvement if we do
not control the area and delay overhead. The average overheads of area and
delay for imprvbest are 18% and 4.4%, respectively. Table IV also indicates that
our algorithm normally terminates in a few iterations (6 on average). Table V
shows comparison results on the 10 largest combinational benchmark circuits.
For large circuits, our algorithm outperforms the DC algorithm by 14.2% in
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Table IV. Average Comparison with Yuan and Qu [2005]

imprvbest imprvo a inco timeo(s) iteo imprvp a incp timep(s)

small 34% 25% 7% 0.01 3.38 17% 9% N/A

large 40% 30% 7% 0.10 7.19 24% 7% 510

average 38% 28% 7% 0.07 5.75 21.4% 7.8% N/A

In this table, imprvbest is the best leakage improvement by our algorithm over random

search (by setting valveRep = 1); imprvo is the leakage improvement of our algorithm

over random search with delay and area overhead control; a inco is the area increase

of our algorithm due to gate replacement; timeo is the runtime of our algorithm on

average; the imprvp, a incp, and timep fields show the corresponding results for the

DC algorithm in Yuan and Qu [2005]; the field iteo is the average number of iterations

executed by our algorithm. The row small shows the average results for 26 small

circuits; row large shows the average results for 43 large circuits; row average is the

average results for all circuits.

Table V. Comparison with Yuan and Qu [2005] on Ten Largest Combinational

Circuits

imprvbest imprvo a inco timeo(s) imprvp a incp timep(s) Speedup

C6288 72% 30% 11% 0.82 8.8% 27.3% 398.7 486

C3540 43% 35.5% 5.8% 0.16 21.3% 2.1% 133.8 836

dalu 52% 42.1% 6.9% 0.11 23.2% 14.2% 194.9 1772

i8 48% 37% 10.8% 0.13 39.4% 6.3% 7591.3 58395

frg2 34% 22% 8.3% 0.07 28.4% 7.4% 176.5 2521

pair 39% 28.4% 4.2% 0.11 17.5% 12% 366 3327

C5315 56% 46% 6.7% 0.24 11.5% 15.1% 534.5 2227

C7552 46% 34.5% 6% 1.09 5.9% 16.1% 726 666

des 56% 44.7% 6.8% 0.40 45.7% 14.2% 8502.6 21257

i10 48% 38.5% 5.3% 0.25 14.3% 6.1% 162.8 651

average 49% 35.87% 7.18% 0.34 21.6% 12.8% 1878.71 9214

All fields have the same meanings as those of Table IV, except the field Speedup, which is

the speedup of our algorithm over the DC algorithm.

terms of leakage reduction, and runs 214 to 24488 times faster. We have not
shown the delays in both Table IV and Table V due to space limitations. For the
10 largest circuits, our algorithm with gate replacement increases critical-path
delays by 1.38% on average, while the delay penalty reported in Yuan and Qu
[2005] is limited by 5%. If performance is much more important than power
consumption, we can disable gate replacement so that our algorithm does not
affect critical-path delays at all.

5. CONCLUSIONS

The leakage power consumed by a circuit in sleep state can be reduced by
applying a low-leakage vector. In this article, we proposed a fast algorithm
that is able to find such a vector and apply the gate replacement technique
simultaneously. Experiments revealed that our algorithm was able to produce
leakage reduction results better than previous state-of-the-art approaches with
several orders of magnitude speedup in runtime.
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