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Abstract
Several recent processor designs have proposed to enhance

performance by increasing the clock frequency to the point
where timing faults occur, and by adding error-correcting sup-
port to guarantee correctness. However, such Timing Specula-
tion (TS) proposals are limited in that they assume traditional
design methodologies that are suboptimal under TS. In this pa-
per, we present a new approach where the processor itself is de-
signed from the ground up for TS. The idea is to identify and op-
timize the most frequently-exercised critical paths in the design,
at the expense of the majority of the static critical paths, which
are allowed to suffer timing errors. Our approach and design op-
timization algorithm are called BlueShift. We also introduce two
techniques that, when applied under BlueShift, improve proces-
sor performance: On-demand Selective Biasing (OSB) and Path
Constraint Tuning (PCT). Our evaluation with modules from the
OpenSPARC T1 processor shows that, compared to conventional
TS, BlueShift with OSB speeds up applications by an average of
8% while increasing the processor power by an average of 12%.
Moreover, compared to a high-performance TS design, BlueShift
with PCT speeds up applications by an average of 6% with an
average processor power overhead of 23% — providing a way to
speed up logic modules that is orthogonal to voltage scaling.

1 Introduction
Power, design complexity, and reliability concerns have dra-

matically slowed down clock frequency scaling in processors and
turned industry’s focus to Chip Multiprocessors (CMPs). Never-
theless, the need for per-thread performance has not diminished
and, in fact, Amdahl’s law indicates that it becomes critical in
parallel systems.
One way to increase single-thread performance is Timing

Speculation (TS). The idea is to increase the processor’s clock
frequency to the point where timing faults begin to occur and to
equip the design with microarchitectural techniques for detecting
and correcting the resulting errors. A large number of proposals
exist for TS architectures (e.g., [1, 5, 6, 9, 11, 14, 20, 24, 25]).
These proposals add a variety of hardware modifications to a pro-
cessor, such as enhanced latches, additional back-ends, a checker
module, or an additional core that works in a cooperative manner.
We argue that a limitation of current proposals is that they
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assume traditional design methodologies, which are tuned for
worst-case conditions and deliver suboptimal performance under
TS. Specifically, existing methodologies strive to eliminate slack
from all timing paths in order to minimize power consumption
at the target frequency. Unfortunately, this creates a critical path
wall that impedes overclocking. If the clock frequency increases
slightly beyond the target frequency, the many paths that make
up the wall quickly fail. The error recovery penalty then quickly
overwhelms any performance gains from higher frequency.
In this paper, we present a novel approach where the proces-

sor itself is designed from the ground up for TS. The idea is to
identify the most frequently-exercised critical paths in the design
and speed them up enough so that the error rate grows much more
slowly as frequency increases. The majority of the static critical
paths, which are rarely exercised, are left unoptimized or even de-
optimized — relying on the TS microarchitecture to detect and
correct the infrequent errors in them. In other words, we optimize
the design for the common case, possibly at the expense of the
uncommon ones. We call our approach and design optimization
algorithm BlueShift.
This paper also introduces two techniques that, when applied

under BlueShift, improve processor performance. These tech-
niques, called On-demand Selective Biasing (OSB) and Path Con-
straint Tuning (PCT), utilize BlueShift’s approach and design op-
timization algorithm. Both techniques target the paths that would
cause the most frequent timing violations under TS, and add slack
by either forward body biasing some of their gates (in OSB) or by
applying strong timing constraints on them (in PCT).
Finally, a third contribution of this paper is a taxonomy of de-

sign for TS. It consists of a classification of TS architectures, gen-
eral approaches to enhance TS, and how the two relate.
We evaluate BlueShift by applying it with OSB and PCT on

modules of the OpenSPARC T1 processor. Compared to a con-
ventional TS design, BlueShift with OSB speeds up applications
by an average of 8% while increasing the processor power by an
average of 12%. Moreover, compared to a high-performance TS
design, BlueShift with PCT speeds up applications by an aver-
age of 6% with an average processor power overhead of 23% —
providing a way to speed up logic modules that is orthogonal to
voltage scaling.
This paper is organized as follows. Section 2 gives a back-

ground; Section 3 presents our taxonomy for TS; Section 4 in-
troduces BlueShift and the OSB and PCT techniques; Sections 5
and 6 evaluate them; and Section 7 highlights other related work.



2 Timing Speculation (TS)
As we increase a processor’s clock frequency beyond its Rated

Frequency fr , we begin to consume the guardband that was set up
for process variation, aging, and extreme temperature and voltage
conditions. As long as the processor is not at its environmental
limits, it can be expected to operate fault-free under this over-
clocking. However, as frequency increases further, we eventually
reach a Limit Frequency f0, beyond which faults begin to occur.
The act of overclocking the processor past f0 and tolerating the
resulting errors is Timing Speculation (TS).
TS provides a performance improvement when the speedup

from the increased clock frequency subsumes the overhead of re-
covering from the timing faults. To see how, consider the perfor-
mance perf(f) of the processor clocked at frequency f, in instruc-
tions per second:

perf(f) =
f

CPInorc(f) + CPIrc(f)
=

=
f

CPInorc(f) × (1 + PE(f) × rp)
=

=
f × IPCnorc(f)

1 + PE(f) × rp
(1)

where, for the average instruction, CPInorc(f) are the cycles
taken without considering any recovery time, and CPIrc(f) are
cycles lost to recovery from timing errors. In addition, PE is the
probability of error (or error rate), measured in errors per non-
recovery cycle. Finally, rp is the recovery penalty per error, mea-
sured in cycles.
Figure 1 illustrates the tradeoff. The plots show three regions.

In Region 1, f < f0, so PE is zero and perf increases consis-
tently, impeded only by the application’s increasing memory CPI.
In Region 2, errors begin to manifest, but perf continues to in-
crease because the recovery penalty is small enough compared to
the frequency gains. Finally, in Region 3, recovery overhead be-
comes the limiting factor, and perf falls off abruptly as f increases.
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Figure 1: Error rate (a) and performance (b) versus fre-
quency under TS.

Conventional processors work at point a in the figures, or at
best at b. TS processors can work at c, therefore delivering higher
single-thread performance.

2.1 Overview of TS Microarchitectures

A TS microarchitecture must maintain a high IPC at high fre-
quencies with as small a recovery penalty as possible— all within
the confines of power and area constraints. Unsurprisingly, differ-
ing design goals give rise to a diversity of TS microarchitectures.
In the following, we group existing proposals into two broad cat-
egories.

2.1.1 Stage-Level TS Microarchitectures

Razor [5], TIMERRTOL [24], CTV [14], and X-Pipe [25] de-
tect faults at pipeline-stage boundaries by comparing the values
latched from speculatively-clocked logic to known good values
generated by a checker. This checker logic can be an entire copy
of the circuit that is safely clocked [14, 24]. A more efficient op-
tion, proposed in Razor [5], is to use a single copy of the logic
to do both speculation and checking. This approach works by
wave-pipelining the logic [4] and latching the output values of
the pipeline stage twice: once in the normal pipeline latch, and a
fraction of a cycle later in a shadow latch. The shadow latch is
guaranteed to receive the correct value. At the end of each cycle,
the shadow and normal latch values are compared. If they agree,
no action is taken. Otherwise, the values in the shadow latches are
used to repair the pipeline state.
Another stage-level scheme, Circuit Level Speculation

(CLS) [9], accelerates critical blocks (rename, adder, and issue)
by including a custom-designed speculative “approximation” ver-
sion of each. For each approximation block, CLS also includes
two fully correct checker instances clocked at half speed. Com-
parison occurs on the cycle after the approximation block gener-
ates its result, and recovery may involve re-issuing errant instruc-
tions.

2.1.2 Leader-Checker TS Microarchitectures

In CMPs, two cores can be paired in a leader-checker organi-
zation, with both running the same (or very similar) code, as in
Slipstream [20], Paceline [6], Optimistic Tandem [11], and Re-
union [18]. The leader runs speculatively and can relax functional
correctness. The checker executes correctly and may be sped up
by hints from the leader as it checks the leader’s work.
Paceline [6] was designed specifically for TS. The leader is

clocked at a frequency higher than the Limit Frequency f0, while
the checker is clocked at the Rated Frequency fr . Paceline allows
adjacent cores in the CMP to operate either as a pair (a leader
with TS and a safe checker), or separately at fr . In paired mode,
the leader sends branch results to the checker and prefetches data
into a shared L2, allowing the checker to keep up. The two cores
periodically exchange checkpoints of architectural state. If they
disagree, the checker copies its register state to the leader. Be-
cause the two cores are loosely coupled, they can be disconnected
and used independently in workloads that demand throughput in-
stead of response time.
One type of leader-checker microarchitecture sacrifices this

configurability in pursuit of higher frequency by making the
leader core functionally incorrect by design. Optimistic Tan-
dem [11] achieves this by pruning infrequently-used functionality
from the leader. DIVA [1] can also be used in this manner by us-
ing a functionally incorrect main pipeline. This approach requires
the checker to be dedicated and always on.

3 Taxonomy of Design for TS
To understand the design space, we propose a taxonomy of de-

sign for TS from an architectural perspective. It consists of a clas-
sification of TS microarchitectures and of general approaches to
enhance TS, and how they relate.
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Figure 2: General approaches to enhance TS by reshaping the PE(f) curve. Each approach shows the curve before
reshaping (in dashes) and after (solid), and the working point of a processor before (a) and after (b).

3.1 Classification of TS Microarchitectures

We classify existing proposals of TS microarchitectures ac-
cording to: (1) whether the fault detection and correction hard-
ware is always on (Checker Persistence), (2) whether functional
correctness is sacrificed to maximize speedup regardless of the
operating frequency (Functional Correctness), and (3) whether
checking is done at pipeline-stage boundaries or upon retirement
of one or more instructions (Checking Granularity). In the follow-
ing, we discuss these axes. Table 1 classifies existing proposals of
TS microarchitectures according to these axes.

Microarchitecture Checker Functional Checking
Persistence Correctness Granularity

Razor [5] Always-on Correct Stage
Paceline [6] On-demand Correct Retirement
X-Pipe [25] Always-on Correct Stage
CTV [14] Always-on Correct Stage
TIMERRTOL [24] Always-on Correct Stage
CLS [9] Always-on Relaxed Stage
Slipstream [20] Always-on Relaxed Retirement
Optim. Tandem [11] Always-on Relaxed Retirement
DIVA [1] Always-on Relaxed Retirement

Table 1: Classification of existing proposals of TS mi-
croarchitectures.

3.1.1 Checker Persistence

The checker hardware that performs fault detection and cor-
rection can be kept Always-on or just On-demand. If single-
thread performance is crucial all the time, the processor will
always operate at a speculative frequency. Consequently, an
Always-on checker suffices. This is the approach of most ex-
isting proposals. However, future CMPs must manage a mix of
throughput- and latency-oriented tasks. To save power when ex-
ecuting throughput-oriented tasks, it is desirable to disable the
checker logic and operate at fr . We refer to schemes where the
checker can be engaged and disengaged as On-demand checkers.

3.1.2 Functional Correctness

Relaxing functional correctness can lead to higher clock fre-
quencies. This can be accomplished by not implementing rarely-
used logic, such as in Optimistic Tandem [11] and CLS [9], by
not running the full program, such as in Slipstream [20], or even
by tolerating processors with design bugs, such as in DIVA [1].
These Relaxed schemes suffer from errors regardless of the clock
frequency. This is in contrast to Correct schemes, which guaran-
tee error-free operation at and below the Limit Frequency.
Relaxing functional correctness imposes a single (speculative)

mode of operation, demanding an Always-on checker. Correct-

ness at the Limit Frequency and below is a necessary condition
for checker schemes based on wave pipelining [4] like Razor [5],
or On-demand checker schemes like Paceline [6].

3.1.3 Checking Granularity

Checking can be performed at pipeline-stage boundaries
(Stage) or upon retirement of one or more instructions (Retire-
ment). In Stage schemes, speculative results are verified at each
pipeline latch before propagating to the next stage. Because faults
are detected within one cycle of their occurrence, the recovery
entails, at worst, a pipeline flush. The small recovery penalty
enables these schemes to deliver performance even at high fault
rates. However, eager fault detection prevents them from exploit-
ing masking across pipeline stages.
The alternative is to defer checking until retirement. In this

case, because detection is delayed, and because recovery may in-
volve heavier-weight operations, the recovery penalty is higher.
On the other hand, Retirement schemes do not need to recover
on faults that are microarchitecturally masked, and the loosely-
coupled checker may be easier to build.

3.2 General Approaches to Enhance TS

Given a TS microarchitecture, Equation 1 shows that we can
improve its performance by reducing PE(f). To accomplish this,
we propose four general approaches. They are graphically shown
in Figure 2. Each of the approaches is shown as a way of reshap-
ing the original PE(f) curve of Figure 1(a) (now in dashes) into
a more favorable one (solid). For each approach, we show that a
processor that initially worked at point a now works at b, which
has a lower PE for the same f.
Delay Trading (Figure 2(a)) slows-down infrequently-

exercised paths and uses the resources saved in this way to speed
up frequently-exercised paths for a given design budget. This
leads to a lower Limit Frequency f ′

0 when compared to the one in
the base design f0 in exchange for a higher frequency under TS.
Pruning or Circuit-level Speculation (Figure 2(b)) removes the

infrequently-exercised paths from the circuit in order to speed-up
the common case. For example, the carry chain of the adder is
only partially implemented to reduce the response time for most
input values [9]. Pruning results in a higher frequency for a
given PE , but sacrifices the ability to operate error-free at any
frequency.
Delay Scaling (Figure 2(c)) and Targeted Acceleration (Fig-

ure 2(d)) speed-up paths and, therefore, shift the curve toward
higher frequencies. The approaches differ in which paths are
sped-up. Delay Scaling speeds-up largely all paths, while Tar-
geted Acceleration targets the common-case paths. As a result,



TS Microarchitectural Characteristic Implication on TS-Enhancing Approach

Checker Persistence Delay Trading is undesirable with On-demand microarchitectures
Functional Correctness Pruning is incompatible with Correct microarchitectures
Checking Granularity All approaches are applied more aggressively to Stage microarchitectures

Table 2: How TS microarchitectural choices impact what TS-enhancing approaches are most appropriate.

while Delay Scaling always increases the Limit Frequency, Tar-
geted Acceleration does not, as f ′

0 may be determined by the
infrequently-exercised critical paths. However, Targeted Accel-
eration is more energy-efficient. Both approaches can be accom-
plished with techniques such as supply voltage scaling or body
biasing [22].
The EVAL framework of Sarangi et al. [13] also pointed out

that the error rate versus frequency curve can be reshaped. Their
framework examined changing the curve as in the Delay Scaling
and Targeted Acceleration approaches, which were called Shift
and Tilt, respectively, to indicate how the curve changes shape.

3.3 Putting It All Together

The choice of a TS microarchitecture directly impacts which
TS-enhancing approaches are most appropriate. Table 2 summa-
rizes how TS microarchitectures and TS-enhancing approaches
relate.
Checker Persistence directly impacts the applicability of Delay

Trading. Recall that Delay Trading results in a lower Limit Fre-
quency than the base case. This would force On-demand checking
architectures to operate at a lower frequency in the non-TS mode
than in the base design, leading to sub-optimal operation. Conse-
quently, Delay Trading is undesirable with On-demand checkers.
The Functional Correctness of the microarchitecture impacts

the applicability of Pruning. Pruning results in a non-zero PE re-
gardless of the frequency. Consequently, Pruning is incompatible
with Correct TS microarchitectures, such as those based on wave
pipelining (e.g., Razor) or on-demand checking (e.g., Paceline).
Checker Granularity dictates how aggressively any of the TS-

enhancing approaches can be applied. An approach is consid-
ered more aggressive if it allows more errors at a given frequency.
Since Stage microarchitectures have a smaller recovery penalty
than Retirement ones, all the TS-enhancing approaches can be
applied more aggressively to Stage microarchitectures.

4 Designing Processors for TS
Our goal is to design processors that are especially suited for

TS. Based on the insights from the previous section, we propose:
(1) a novel processor design methodology that we call BlueShift
and (2) two techniques that, when applied under BlueShift, im-
prove processor frequency. These two techniques are instanti-
ations of the approaches introduced in Section 3.2. Next, we
present BlueShift and then the two techniques.

4.1 The BlueShift Framework

Conventional design methods use timing analysis to identify
the static critical paths in the design. Since these paths would
determine the cycle time, they are then optimized to reduce their
latency. The result of this process is that designs end up having
a critical path wall, where many paths have a latency equal to or
only slightly below the clock period.
We propose a different design method for TS processors, where

it is fine if some paths take longer than the period. When these

paths are exercised and induce an error, a recovery mechanism is
invoked. We call the paths that take longer than the period Over-
shooting paths. They are not critical because they do not deter-
mine the period. However, they hurt performance in proportion to
how often they are exercised and cause errors.
Consequently, a key principle when designing processors for

TS is that, rather than working with static distributions of path de-
lays, we need to work with dynamic distributions of path delays.
Moreover, we need to focus on optimizing the paths that over-
shoot most frequently dynamically — by trying to reduce their
latency. Finally, we can leave unoptimized many overshooting
paths that are exercised only infrequently — since we have a fault
correction mechanism.
BlueShift is a design methodology for TS processors that uses

these principles. In the following, we describe how BlueShift
identifies dynamic overshooting paths and its iterative approach
to optimization.

4.1.1 Identifying Dynamic Overshooting Paths

BlueShift begins with a gate-level implementation of the circuit
from a traditional design flow. A representative set of benchmarks
is then executed on a simulator of the circuit. At each cycle of the
simulation, BlueShift looks for latch inputs that change after the
cycle has elapsed. Such endpoints are referred to as overshooting.
As an example, Figure 3 shows a circuit with a target period of
500ns. The numbers on the nets represent their switching times
on a given cycle. Note that a net may switch more than once per
cycle. Since endpoints X and Y both transition after 500ns, they
are designated as overshooting for this cycle. Endpoint Z has com-
pleted all of its transitions before 500ns, so it is non-overshooting
for this cycle.
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Figure 3: Circuit annotated with net transition times,
showing two overshooting paths for this cycle.

Once the overshooting endpoints for a cycle are known,
BlueShift determines the path of gates that produced their transi-
tions. These are the overshooting paths for the cycle, and are the
objects on which any optimization will operate. To identify these
paths, BlueShift annotates all nets with their transition times. It
then backtraces from each overshooting endpoint. As it back-
traces from a net with transition time tn, it locates the driving
gate and its input whose transition at time ti caused the change
at tn. For example, in Figure 3, the algorithm backtraces from X
and finds the path b → c → e. Therefore, path b → c → e is



overshooting for the cycle shown.
For each path p in the circuit, the analysis creates a set of cy-

clesD(p) in which that path overshoots. IfNcycles is the number
of simulated cycles, we define the Frequency of Overshooting of
path p as d(p) = |D(p)|/Ncycles. Then, the rate of errors per cy-
cle in the circuit (PE) is upper-bounded bymin(1,

P
p d(p)). To

reduce PE , BlueShift focuses on the paths with the highest fre-
quency of overshooting first. Once enough of these paths have
been accelerated and PE drops below a pre-set target, optimiza-
tion is complete; the remaining overshooting paths are ignored.

4.1.2 Iterative Optimization Flow

BlueShift makes iterative optimizations to the design, address-
ing the paths with the highest frequency of overshooting first. As
the design is transformed, new dynamic overshooting paths are
generated and addressed in subsequent iterations. This iterative
process stops when PE falls below target. Figure 4 illustrates the
full process. It takes as inputs an initial gate-level design and the
designer’s target speculative frequency and PE .

Benchmark 0 Benchmark 1 Benchmark n-1

Path profile

Design changes

Physical design

PE < targetPE > target

Final design

Select training benchmarks2

Compute training set error rate4

Gate level simulation3

Speed up paths with highest 
frequency of overshooting5

Initial Netlist

1

Restructuring
Placement

Clock tree synth
Routing

Leakage minimization

Physical-aware
Optimization

Figure 4: The BlueShift optimization flow.

At the head of the loop (Step 1), a physical-aware optimiza-
tion flow takes a list of design changes from the previous itera-
tion and applies them as it performs aggressive logical and phys-
ical optimizations. The output of Step 1 is a fully placed and
routed physical design suitable for fabrication. Step 2 begins
the embarrassingly-parallel profiling phase by selecting n train-
ing benchmarks. In Step 3, one gate-level timing simulation is
initiated for each benchmark. Each simulation runs as many in-
structions as is economical and then computes the frequencies of

overshooting for all paths exercised during the execution. Before
Step 4, a global barrier waits for all of the individual simulations
to finish. Then, the overall frequency of overshooting for each
path is computed by averaging the measure for that path over the
individual simulation instances. BlueShift also computes the av-
erage PE across all simulation instances.
BlueShift then performs the exit test. If PE is less than the de-

signer’s target, then optimization is complete; the physical design
after Step 1 of the current iteration is ready for production. As a
final validation, BlueShift executes another set of timing simula-
tions using a different set of benchmarks (the Evaluation set) to
produce the final PE versus f curve. This is the curve that we use
to evaluate the design.
If, on the other hand, PE exceeds the target, we collect the

set of paths with the highest frequency of overshooting, and use
an optimization technique to generate a list of design changes to
speed-up these paths (Step 5). Different optimization techniques
can be used to generate these changes. We present two next.

4.2 Techniques to Improve Performance

To speed-up processor paths, we propose two techniques that
we call On-demand Selective Biasing (OSB) and Path Constraint
Tuning (PCT). They are specific implementations of two of the
general approaches to enhance TS discussed in Section 3.2,
namely Targeted Acceleration and Delay Trading, respectively.
We do not consider techniques for the other approaches in Fig-
ure 2 because a technique for Pruning was already proposed
in [11] and Delay Scaling is a degenerate, less energy-efficient
variant of Targeted Acceleration that lacks path targeting.

4.2.1 On-Demand Selective Biasing (OSB)

On-demand Selective Biasing (OSB) applies forward body bi-
asing (FBB) [22] to one or more of the gates of each of the paths
with the highest frequency of overshooting. Each gate that re-
ceives FBB speeds up, reducing the path’s frequency of over-
shooting. With OSB, we push the PE versus f curve as in Fig-
ure 2(d), making the processor faster under TS. However, by ap-
plying FBB, we also increase the leakage power consumed.
Figure 5(a) shows how OSB is applied, while Figure 5(b)

shows pseudo code for the algorithm of Step 5 in Figure 4 for
OSB. The algorithm takes as input a constant k, which is the frac-
tion of all the dynamic overshooting in the design that will remain
un-addressed after the algorithm of Figure 5(b) completes.
The algorithm proceeds as follows. At any time, the algorithm

maintains a set of paths that are eligible for speedup (Pelig). Ini-
tially, at entry to Step 5 in Figure 4, Line 1 of the pseudo code
in Figure 5(b) sets all the dynamic overshooting paths (Poversh)
to be eligible for speedup. Next, in Line 2 of Figure 5(b), a loop
begins in which one gate will be selected in each iteration to re-
ceive FBB. In each iteration, we start by considering all paths p in
Pelig weighted by their frequency of overshooting d(p). We also
define the weight of a gate g as the sum of the weights of all the
paths in which it participates (paths(g)). Then, Line 3 of Fig-
ure 5(b) greedily selects the gate (gsel) with the highest weight.
Line 4 removes from Pelig all the paths in which the selected gate
participates. Next, Line 5 adds the selected gate to the set of gates
that will receive FBB (GFBB). Finally, in Line 6, the loop termi-
nates when the fraction of all the original dynamic overshooting
that remains un-addressed is no higher than k.
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Figure 5: On-demand Selective Biasing (OSB): applica-
tion to a chip (a) and pseudo code of the algorithm (b).

After this algorithm is executed in Step 5 of Figure 4, the de-
sign changes are passed to Step 1, where the physical design flow
regenerates the netlist using FBB gates where instructed. In the
next iteration of Figure 4, all timing simulations assume that those
gates have FBB. We may later get to Step 5 again, in which case
we will take the current dynamic overshooting paths and re-apply
the algorithm. Note that the selection of FBB gates across itera-
tions is monotonic; once a gate has been identified for accelera-
tion, it is never reverted to standard implementation in subsequent
iterations.
After the algorithm of Figure 4 completes, the chip is designed

with body-bias signal lines that connect to the gates in GFBB .
The overhead of OSB is the extra static power dissipated by the
gates with FBB and the extra area needed to route the body-bias
lines and to implement the body-bias generator [22].
In TS architectures with On-demand checkers like Paceline [6]

(Table 1), it is best to be able to disable OSB when the checker is
not present. Indeed, the architecture without checker cannot ben-
efit from OSB anyway, and disabling OSB also saves all the extra
energy. Fortunately, this technique is easily and quickly disabled
by removing the bias voltage. Hence the “on-demand” part of this
technique’s name.

4.2.2 Path Constraint Tuning (PCT)

Path Constraint Tuning (PCT) applies stronger timing con-
straints on the paths with the highest frequency of overshooting,
at the expense of the timing constraints on the other paths. The re-
sult is that, compared to the period T0 of a processor without TS
at the Limit Frequency f0, the paths that initially had the high-
est frequency of overshooting now take less than T0, while the
remaining ones take longer than T0. PCT improves the perfor-
mance of the common-case paths at the expense of the uncom-
mon ones. With PCT, we change the PE versus f curve as in Fig-
ure 2(a), making the processor faster under TS— although slower
if it were to run without TS. This technique does not intrinsically
have a power cost for the processor.
Existing design tools can transfer slack between connected

paths in several ways, exhibited in Figure 6. The figure shows
an excerpt from a larger circuit in which we want to speed up
path A → Z by transferring slack from other paths. Figure 6(a)
shows the original circuit, and following to the right are succes-
sive transformations to speed up A → Z at the expense of other
paths. First, Figure 6(b) refactors the six-input AND tree to re-
duce the number of logic levels between A and Z. This transforma-
tion lengthens the paths that now have to pass through two 3-input
ANDs. Figure 6(c) further accelerates A → Z by increasing the
drive strength of the critical AND. However, we have to downsize
the connected buffer to avoid increasing the capacitive load on A
and, therefore, we slow down A → X . Figure 6(d) refines the
gate layout to shorten the long wire on path A → Z at the ex-
pense of lengthening the wire on A → X . Finally, Figure 6(e)
allocates a reduced-Vt gate (or an FBB gate) along the A → Z
path. This speeds up the path but has a power cost, which may
need to be recovered by slowing down another path.
The implementation of PCT is simplified by the fact that ex-

isting design tools already implement the transformations shown
in Figure 6. However, they do all of their optimizations based on
static path information. Fortunately, they provide a way of spec-
ifying “timing overrides” that increase or decrease the allowable
delay of a specific path. PCT uses these timing overrides to spec-
ify timing constraints equal to the speculative clock period for
paths with high frequency of overshooting, and longer constraints
for the rest of the paths.
The task of Step 5 in Figure 4 for PCT is simply to gener-

ate a list of timing constraints for a subset of the paths. These
constraints will be processed in Step 1. To understand the PCT
algorithm, assume that the designer has a target period with TS
equal to Tts. In the first iteration of the BlueShift framework of
Figure 4, Step 1 assigns a relaxed timing constraint to all paths.
This constraint sets the path delays to r × Tts (where r is a relax-



General Processor/System Parameters
Width: 6-fetch 4-issue 4-retire OoO L1 D Cache: 16KB WT, 2 cyc round trip, 4 way, 64B line
ROB: 152 entries L1 I Cache: 16KB WB, 2 cyc round trip, 2 way, 64B line
Scheduler: 40 fp, 80 int L2 Cache: 2MB WB, 10 cyc round trip (at Rated f), 8 way, 64B line,
LSQ Size: 54 LD, 46 ST shared by two cores, has stride prefetcher
Branch Pred: 80Kb tournament Memory: 400 cyc round trip (at Rated f), 10GB/s max
Paceline Parameters Razor Parameters
Max Leader–Checker Lag: 512 instrs or 64 stores Pipeline Fix and Restart Overhead: 5 cyc
Checkpoint Interval: 100 instrs Total Target PE : 10−3 err/cyc
Checkpoint Restoration Overhead: 100 cyc
Total Target PE : 10−5 err/cyc

Table 3: Microarchitecture parameters.

ation factor), making them even longer than a period that would
be reasonable without TS. When we get to Step 5, the algorithm
first sorts all paths in order of descending frequency of overshoot-
ing at Tts. Then, it greedily selects paths from this list leaving
those whose combined frequency of overshooting is less than the
target PE . To these selected paths, it assigns a timing constraint
equal to Tts. Later, when the next iteration of Step 1 processes
these constraints, it will ensure that these paths all fit within Tts,
possibly at the expense of slowing down the other paths.
At each successive iteration of BlueShift, Step 5 assigns the

Tts timing constraint to those paths that account for a combined
frequency of overshooting greater than the target PE at Tts. Note
that once a path is constrained, that constraint persists for all fu-
ture BlueShift iterations. Eventually, after several iterations, a
sufficient number of paths are constrained to meet the target PE .

5 Experimental Setup
The PCT and OSB techniques are both applicable to a va-

riety of TS microarchitectures. However, to focus our evalua-
tion, we mate each technique with a single TS microarchitecture
that, according to Section 3.3, emphasizes its strengths. Specif-
ically, an Always-on checker is ideal for PCT because it lacks a
non-speculative mode of operation, where PCT’s longer worst-
case paths would force a reduction in frequency. Conversely, an
On-demand microarchitecture is suited to OSB because it does
have a non-speculative mode where worst-case delay must re-
main short. Moreover, OSB is easy to disable. Finally, the PCT
design, where TS is on all the time, targets a high-performance
environment, while the OSB one targets a more power-efficient
environment. Overall, we choose a high-performance Always-on
Stage microarchitecture (Razor [5]) for PCT and a power-efficient
On-demand Retirement one (Paceline [6]) for OSB. We call the
resulting BlueShift-designed microarchitecures Razor+PCT and
Paceline+OSB respectively.
Table 3 shows parameter values for the processor and system

architecture modeled in both experiments. The table also shows
Paceline and Razor parameters for the OSB and PCT evaluations,
respectively. In all cases, only the core is affected by TS; the L2
and main memory access times remain unaffected.

5.1 Modeling

To accurately model the performance and power consump-
tion of a gate-level BlueShifted processor running applications
requires a complex infrastructure. To simplify the problem, we
partition the modeling task into two loosely-coupled levels. The
lower level comprises the BlueShift circuit implementation, while
the higher level consists of microarchitecture-level power and per-

formance estimation.
At the circuit-modeling level, we sample modules from the

OpenSPARC T1 processor [19], which is a real, optimized, indus-
trial design. We apply BlueShift to these modules and use them
to compute PE and power estimates before and after BlueShift.
At the microarchitecture level, we want to model a more so-
phisticated core than the OpenSPARC. To this end, we use the
SESC [12] cycle-level execution-driven simulator to model the
out-of-order core of Table 3.
The difficulty lies in incorporating the circuit-level PE and

power estimates into the microarchitecural simulation. Our ap-
proach is to assume that the modules from the OpenSPARC are
representative of those in any other high-performance processor.
In other words, we assume that BlueShift would induce roughly
the same PE and power characteristics on the out-of order mi-
croarchitecture that we simulate as it does on the in-order proces-
sor that we can measure directly.
In the following subsections, we first describe how we generate

the BlueShifted circuits. We then show how PE and power esti-
mates are extracted from these circuits and used to annotate the
microarchitectural simulation.

5.1.1 BlueShifted Module Implementation

To make the level of effort manageable, we focus our analysis
on only a fewmodules of the OpenSPARC core. The chosen mod-
ules are sampled from throughout the pipeline, and are shown in
Table 4. Taken together, these modules provide a representative
profile of the various pipeline stages. For each module, the Stage
column of the table shows where in the pipeline (Fetch/Decode,
EXEcute, or MEMory) the module resides. The next two columns
show the size in number of standard cells and the shortest worst-
case delay attained by the traditional CAD flow without using any
low-Vt cells (which consume more power).
The next two columns show the per-module error rate targets

under PCT and OSB. This is the PE that BlueShift will try to
ensure for each module. We obtain these numbers by apportion-
ing a “fair share” of the total processor PE to each module —
roughly according to its size. With these PE targets, when the full
pipeline is assembled (including modules not in the sample set),
the total processor PE will be roughly 10−3 errors/cycle for PCT
and 10−5 for OSB. These were the target total PE numbers in Ta-
ble 3. They are appropriate for the average recovery overhead of
the corresponding architectures: 5 cycles for Razor (Table 3) and
about 1,000 cycles for Paceline (which include 100 cycles spent
in checkpoint restoration as per Table 3). Indeed, with these val-
ues of PE and recovery overhead, the total performance lost in
recovery is 1% or less.
The largest and most complex module is sparc exu. It contains



Module Stage Num. Tr Target PE (Errors/Cycle) Description
Name Cells (ns) PCT OSB

sparc exu EXE 21,896 1.50 10−4 10−6 Integer FUs, control, bypass
lsu stb ctl MEM 765 1.11 10−5 10−7 Store buffer control
lsu qctl1 MEM 2,336 1.50 10−5 10−7 Load/Store queue control
lsu dctl MEM 3,682 1.00 10−5 10−7 L1 D-cache control

sparc ifu dec F/D 765 0.75 10−5 10−7 Instruction decoder
sparc ifu fdp F/D 7,434 0.94 10−5 10−7 Fetch datapath and PC maintenance
sparc ifu fcl F/D 2,299 0.96 10−5 10−7 L1 I-cache and PC control

Table 4: OpenSPARC modules used to evaluate BlueShift.

Feature size 130nm scaled to 32nm
Metal 7 layers
Tmax 100◦C
Low-Vt devices 10x leakage; 0.8x delay
f guardband 10%

Table 5: Process parameters.

# Benchmarks run per iteration 200 (PCT)
400 (OSB)

# Cycles per benchmark 25K
r: PCT relaxation factor 1.5
k: Fraction of all the dynamic overshooting that 0.01
remains un-addressed after each OSB iteration of Figure 4

Table 6: BlueShift parameters.

the integer register file, the integer arithmetic and logic datapaths
along with the address generation, bypass and control logic. It
also performs other control duties including exception detection,
save/restore control for the SPARC register windows, and error
detection and correction using ECC. This module alone is larger
than many lightweight embedded processor cores.
Using Synopsis Design Compiler 2007.03 and Cadence En-

counter 6.2, we perform full physical (placed and routed) imple-
mentations of the modules in Table 4 for the standard cell process
described in Table 5. To make the results more accurate for a near-
future (e.g., 32nm) technology, we scale the cell leakage so that
it accounts for ≈30% of the total power consumption. The pro-
cess has a 10% guardband to tolerate environmental and process
variations. This means that f0 = 1.10 × fr , where fr and f0 are
the Rated and Limit Frequencies, respectively. The process also
contains low-Vt gates that have a 10x higher leakage and a 20%
lower delay than normal gates [15, 23]. These gates are available
for assignment in high-performance environments such as those
with Razor. Finally, the FBB gates used in OSB are electrically
equivalent to low-Vt gates when FBB is enabled and to standard
Vt gates when it is not.
Table 6 lists the BlueShift parameters. In the Razor+PCT ex-

periments, we add hold-time delay constraints to the paths1 to
accommodate shadow latches. Moreover, shadow latches are in-
serted wherever worst-case delays exceed the speculative clock
period. Each profiling phase (Step 2 of Figure 4) comprises a par-
allel run of 200 (or 400 for OSB) benchmark samples, each one
running for 25K cycles.
We use the unmodified RTL sources from OpenSPARC, but

we simplify the physical design by modeling the register file and
the 64-bit adder as black boxes. In a real implementation, these
components would be designed in full-custom logic. We use tim-
ing information supplied with the OpenSPARC to build a detailed
900MHz black box timing model for the register file; then, we
use CACTI [21] to obtain an area estimate and build a realistic
physical footprint. The 64-bit adder is modeled on [27], and has
a worst-case delay of 500ns.
Although we find that BlueShift is widely applicable to logic

modules, it is not effective on array structures where all paths are

1For some modules, the commercial design tools that we use are un-
able to meet the minimum path delay constraints, but we make a best effort
to honor them.

exercised with approximately equal frequency. As a result, we
classify caches, register files, branch predictor, TLBs, and other
memory blocks in the processor as Non-BlueShiftable. We as-
sume that these modules attain performance scaling without tim-
ing errors through some other method (e.g. increased supply volt-
age) and account for the attendant power overhead.

5.1.2 Module-Level PE and Power

For each benchmark, we use Simics [10] to fast-forward exe-
cution over 1B cycles, then checkpoint the state and transfer the
checkpoint to the gate-level simulator. To perform the transfer,
we use the CMU Transplant tool [17]. This enables us to execute
many small, randomly-selected benchmark samples in gate-level
detail. Further, only the gate-level modules from Table 4 need to
be simulated at the gate level. Functional, RTL-only simulation
suffices for the remaining modules of the processor.
The experiments use SPECint2006 applications as the Train-

ing set in the BlueShift flow (Steps 1–5 of Figure 4). After
BlueShift terminates, we measure the error rate for each module
using SPECint2000 applications as the Evaluation set. From the
latter measurements, we construct a PE versus f curve for each
SPECint2000 application on each module. All PE measurements
are recorded in terms of the fraction of cycles on which at least
one latch receives the wrong value. This is an accurate strategy
for the Razor-based evaluation, but because it ignores architec-
tural and microarchitectural masking across stages, it is highly
pessimistic for Paceline.
Circuit-level power estimation for the sample modules is done

using Cadence Encounter. We perform detailed capacitance ex-
traction and then use the tool’s default leakage and switching anal-
ysis.

5.1.3 Microarchitecture-Level PE and Power

We compute the performance and power consumption of
the Paceline- and Razor-based microarchitectures using the
SESC [12] simulator, augmented with Wattch [3], HotLeak-
age [26], and HotSpot [16] power and temperature models. For
evaluation, we use the SPECint2000 applications, which were
also used to evaluate the per-module PE in the preceding section.
The simulator needs only a few key parameters derived from the
low-level circuit analysis to accurately capture the PE and power
impact of BlueShift.



Paceline Base Paceline+OSB Razor Base Razor+PCT
Module Psta Edyn Psta Edyn Psta Edyn Psta Edyn

(mW) (pJ) (mW) (pJ) (mW) (pJ) (mW) (pJ)

sparc exu 68.5 207.8 75.1 207.8 175.1 217.2 130.3 257.8
lsu stb ctl 2.1 5.6 2.1 5.6 4.3 6.0 3.9 9.5
lsu qctl1 4.7 18.8 4.7 18.8 12.4 18.8 15.4 35.9
lsu dctl 8.8 33.3 9.2 33.3 20.7 35.1 21.3 54.5
sparc ifu dec 2.1 1.4 3.3 1.4 5.9 3.9 5.1 5.3
sparc ifu fdp 21.7 117.6 23.8 117.6 36.1 119.6 30.0 146.6
sparc ifu fcl 5.8 15.7 6.4 15.7 16.5 15.7 10.6 24.3

Total 113.7 400.3 124.7 400.3 271.0 416.1 216.6 533.7

Table 7: Static power consumption (Psta) and switching energy per cycle (Edyn) for each module implementation.

To estimate the PE for the entire pipeline, we first sum up the
PE from all of the sampled modules of Table 4. Then, we take the
resulting PE and scale it so that it also includes the estimated con-
tribution of all the other BlueShiftable components in the pipeline.
We assume that the PE of each of these modules is roughly pro-
portional to the size of the module. Note that by adding up the
contributions of all the modules, we are assuming that the pipeline
is a series-failure system with independent failures, and that there
is no error masking across modules. The result is a whole-pipeline
PE versus frequency curve for each application. We use this curve
to initiate error recoveries at the appropriate rate in the microar-
chitectural simulator.
For power estimation, we start with the dynamic power esti-

mations from Wattch for the simulated pipeline. We then scale up
these Raw power numbers to take into account the higher power
consumption induced by the BlueShift optimization. The scale
factor is different for the BlueShiftable and the Non-BlueShiftable
components of the pipeline. Specifically, we first measure the dy-
namic power consumed in all of the sampled OpenSPARC mod-
ules as given by Cadence Encounter. The ratio of the power after
BlueShift over the power before BlueShift is the factor that we use
to scale up the Raw power numbers in the BlueShiftable compo-
nents. For the Non-BlueShiftable components, we first compute
the increase in supply voltage that is necessary for them to keep
up with the frequency of the rest of the pipeline, and then scale
their Raw power numbers accordingly.
For the static power, we use a similar approach based on

HotLeakage and Cadence Encounter. However, we modify the
HotLeakage model to account for the differing numbers of low-
Vt gates in each environment of our experiments.
As a thermal environment, microarchitectural power simula-

tions assume a 16-core, 32nm CMP with half of the cores idle.
Maximum temperature constraints are enforced.

6 Evaluation
For each of the Paceline+OSB and Razor+PCT architectures,

this section estimates the whole-pipeline PE(f) curve, the perfor-
mance, and the total power.

6.1 Implementations of the Pipeline Modules

Our evaluation uses four different implementations of the mod-
ules in Table 4. The Paceline Base implementation uses a tra-
ditional CAD flow to produce the fastest possible version of
each module without using any low-Vt gates. We choose this
leakage-efficient implementation because our Paceline-based de-
sign points target a power-efficient environment (Section 5). This
implementation, when used in an environment where the two

cores in Paceline are decoupled [6], provides the normalized basis
for the frequency and performance results in this paper. Specifi-
cally, a frequency of 1 corresponds to the Rated Frequency of the
Paceline Base implementation, and a speedup of 1 corresponds
to the performance of this implementation when the cores are de-
coupled.
If we run the Paceline Base design through the BlueShift OSB

flow targeting a 20% frequency increase for all the modules (at
the target PE specified in Table 4), we obtain the Paceline+OSB
implementation. Note that, in this implementation, if we disable
the body bias, we obtain the same performance and power as in
Paceline Base.
The PCT evaluation with Razor requires the introduction of

another non-BlueShifted implementation. Since our Razor-based
design points target a high-performance environment (Section 5),
we use an aggressive traditional CAD flow that is allowed unre-
stricted use of low-Vt gates (although the tools are still instructed
to minimize leakage as much as possible). Because of the aggres-
sive use of low-Vt devices, the modules in this implementation
reach a worst-case timing that is 15% faster than Paceline Base.
We then apply Razor to this implementation and call the result
Razor Base.
Finally, we use the BlueShift PCT flow targeting a 30% fre-

quency increase over Paceline Base for all modules — again at
the target PE specified in Table 4. This implementation of the
modules also includes Razor latches. We call it Razor+PCT.
Each implementation offers a different tradeoff between dy-

namic and static power consumption. Table 7 shows the static
power at 85◦C (Psta) and the average switching energy per cycle
(Edyn) consumed by each module under each implementation.
As expected, Paceline Base consumes the least power and energy.
Next, Paceline+OSB has only slightly higher static power.
The two Razor-based implementations have higher static

power consumption, mostly due to their heavier use of low-Vt

devices. In Razor Base and Razor+PCT, the fraction of low-Vt

gates is 11% and 5%, respectively. Additionally, the Razor-based
implementations incur power overhead from Razor itself. This
overhead is more severe in Razor+PCT than in Razor Base for
two reasons. First, note that any latch endpoint that can exceed
the speculative clock period requires a shadow latch. After PCT-
induced path relaxation, the probability of an endpoint having
such a long path increases, so more Razor latches are required.
Second, Razor+PCT requires more hold-time fixing. This is be-
cause we diverge slightly from the original Razor proposal [5] and
assume that the shadow latches are clocked a constant delay after
the main edge — rather than a constant phase difference. With
PCT-induced path relaxation, the difference between the long and
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Figure 7: Whole-pipeline PE(f) curves for the four implementations. The frequencies are given relative to the Rated
Frequency (fr) of Paceline Base.

short path delay increases, and the delay between the shadow and
main latch clock must be increased. This requires more buffers
on the short paths to guarantee sufficient shadow hold time.

6.2 Error Curve Transformations

We now consider the resulting whole-pipeline PE(f) curves.
Figures 7(a)-(d) show the curves for each of the four imple-
mentations. These curves do not include the effect of the non-
BlueShiftable modules. In each plot, the x axis shows the fre-
quency relative to the Rated Frequency (fr) of Paceline Base.
Each plot has one curve for each SPECint2000 application. In
addition, there is a horizontal dashed line that marks the whole-
pipeline target PE , namely 10−5 errors per cycle for the Paceline-
based environments and 10−3 for the Razor-based ones.
Figure 7(a) shows the curve for Paceline Base. Since we use a

10% guardband (Table 5), the Limit Frequency f0 is at 1.1 in the
plot. As we increase f, PE takes non-zero values past f0 (although
it is invisible in the figure) and quickly reaches high values. This
is due to the critical path wall of conventional designs. Conse-
quently, using TS on a non-BlueShift design can only manage
frequencies barely above f0 before PE becomes prohibitive.
Figure 7(b) shows the curve for Paceline+OSB. This plot fol-

lows the Targeted Acceleration shape in Figure 2. Specifically,
PE starts taking non-zero values past f0 like in Paceline Base—
a static timing analysis shows that the worst-case delays are un-
changed from Paceline Base. However, the rise in PE is delayed
until higher frequencies. Indeed, PE remains negligible until a
relative frequency of 1.27, compared to about 1.11 in Paceline
Base. This shows that the application of BlueShift with OSB en-
ables an increase in processor frequency of 14%.
Figure 7(b) also shows a dashed vertical line. This was OSB’s

frequency target, namely a 20% increase over Paceline Base (Sec-
tion 6.1) — or 1.2×1.1=1.32 after the guardband. However, we
see that OSB did not meet its target. This is because the Training
application set (which was used in the optimization algorithm of
Figure 4) failed to capture some key behavior of the Evaluation set
(which was used to generate the PE curves). Consequently, Pace-
line+OSB, like other TS microarchitectures, will rely on its con-
trol mechanism to operate at the frequency that maximizes per-
formance (1.27 in this case) rather than at its target. While higher
frequencies may be possible with more comprehensive training,
the obtained 14% frequency increase is substantial.
Figure 7(c) shows the curve for Razor Base. Since this is

not a BlueShifted design, it exhibits a rapid PE increase as in
Paceline Base. The difference here is that, because it targets a

high-performance (and power) design point, it attains a higher fre-
quency than Paceline Base.
Finally, Figure 7(d) shows the curve for Razor+PCT. The plot

follows the Delay Trading shape in Figure 2. Specifically, PE

starts taking non-zero values at lower frequencies than in Paceline
Base, but the curve rises more gradually than in Paceline+OSB.
The dashed vertical line shows the target frequency, which was
30% higher than Paceline Base (Section 6.1) — or 1.3×1.1=1.43
after the guardband. We can see that most applications reach this
frequency at the whole-pipeline target PE . Compared to the fre-
quency of 1.28 attained by Razor Base, this means that BlueShift
with PCT enables an increase in processor frequency of 12%. The
two exceptions are the twolf and vpr applications, which fail to
meet the target PE due to discrepancies between the Training
and Evaluation application sets. For these applications, the Ra-
zor+PCT architecture will adapt to run at a lower frequency, so
as to maximize performance.

6.3 Paceline+OSB Performance and Power

We compare three Paceline-based architectures. First, Un-
paired uses the Paceline Base module implementation and one
core runs at the Rated Frequency while the other is idle. Secondly,
Paceline Base uses the Paceline Base module implementation
and the cores run paired under Paceline. Finally, Paceline+OSB
uses the Paceline+OSBmodule implementation and the cores run
paired under Paceline. For each application, Paceline Base runs
at the frequency that maximizes performance. For the same appli-
cation, Paceline+OSB runs at the frequency that maximizes per-
formance considering only the PE curves of the BlueShiftable
components; then, we apply traditional voltage scaling to the non-
BlueShiftable components so that they can catch up — always
subject to temperature constraints.
Figure 8(a) shows the speedup of the Paceline Base and Pace-

line+OSB architectures over Unpaired for the different applica-
tions. We see that Paceline+OSB delivers a performance that is,
on average, 8% higher than that of Paceline Base. Therefore,
the impact of BlueShift with OSB is significant. The figure also
shows that, on average, Paceline+OSB improves the performance
by 17% over Unpaired. Finally, given that all applications cy-
cle at approximately the same frequency for the same architec-
ture (Figures 7(a) and 7(b)), the difference in performance across
applications is largely a function of how well individual applica-
tions work under Paceline. For example, applications with highly-
predictable branches such as vortex cause the checker to be a bot-
tleneck and, therefore, the speedups in Figure 8(a) are small.



0

2

4

6

8

10

12

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

m
ea

n

0

2

4

6

8

10

12

0

2

4

6

8

10

12

Checker Leader NonBS Leader BS Extra
S

pe
ed

up
 (

%
 o

ve
r 

U
np
ai
re
d)

P
ow

er
 (

W
)

(a) (b)

2x
Unpaired

Paceline
Base

Paceline
+OSB

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

hm
ea

n

0

5

10

15

20

25

Paceline Base Paceline+OSB
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Figure 9: Performance (a) and power consumption (b) of different Razor-based processor configurations.

Figure 8(b) shows the power consumed by the processor and
L1 caches in Paceline Base, Paceline+OSB, and two instances of
Unpaired. The power is broken down into power consumed by
the checker core (which is never BlueShifted), non-BlueShiftable
modules in the leader, BlueShiftable modules in the leader, and
extra Paceline structures (checkpointing, VQ, and BQ). On aver-
age, the power consumed by Paceline+OSB is 12% higher than
that of Paceline Base. Consequently, BlueShift with OSB does
not add much to the power consumption while delivering a sig-
nificant performance gain. Note that the checker power is gen-
erally lower when the cores run in paired mode. This is because
the checker core saves energy by skipping the execution of many
wrong-path instructions.

6.4 Razor+PCT Performance and Power

We now compare two Razor-based architectures. Razor Base
uses the Razor Base module implementation, while Razor+PCT
uses the Razor+PCT one obtained by applying BlueShift with
PCT. As before, Razor+PCT runs at the frequency given by the
PE curves of the BlueShiftable components; then, we apply tra-
ditional voltage scaling to the non-BlueShiftable components so
that they can catch up.
Figure 9(a) shows the speedup of the Razor Base and Ra-

zor+PCT architectures over the Unpaired one used as a baseline
in Figure 8(a). Since these Razor-based architectures target high
performance, they deliver higher speedups. We see that, on aver-
age, Razor+PCT’s performance is 6% higher than that of Razor
Base. This is the impact of BlueShift with PCT in this design —

which is not negligible considering that Razor Base was already
designed for high performance. We also see that vpr and, to a
lesser extent, twolf do not perform as well as the other applica-
tions under Razor+PCT. This is the result of the unfavorable PE

curve for these applications in Figure 7(d).
Figure 9(b) shows the power consumed by the two processor

configurations. The power is broken down into the contributions
of the non-BlueShiftable and the BlueShiftable modules. On av-
erage, Razor+PCT consumes 23% more power than Razor Base.
This is because it runs at a higher frequency, uses a higher sup-
ply voltage for the non-BlueShiftable modules, and needs more
shadow latches and hold-time buffers.
Given Razor+PCT’s delivered speedup and power cost, we see

that BlueShift with PCT is not compelling from an E × D2 per-
spective. Instead, we see it as a technique to further speed-up
a high-performance design (at a power cost) when conventional
techniques such as voltage scaling or body biasing do not provide
further performance. Specifically, for logic (i.e., BlueShiftable)
modules, BlueShift with PCT provides an orthogonal means of
improving performance when further voltage scaling or body bi-
asing becomes unfeasible. In this case however, for the pipeline as
a whole, non-BlueShiftable stages remain a bottleneck that must
be addressed using some other technique.

6.5 Computational Overhead

Although most modules of Table 4 were fully optimized with
BlueShift in one day on our 100-core cluster, the optimization of
sparc exu took about one week. Such long turnaround times dur-



ing the frantic timing closure process would be unacceptable in
industry. Fortunately, the current implementation is only a proto-
type, and drastic improvements in runtime are possible. Specifi-
cally, referring to Figure 4, a roughly equal amount of wall time is
spent in physical implementation (Step 1) and profiling (Step 3).
Luckily, the profiling phase is embarrassingly parallel, so simply
adding more processors can speed it up. However, the CAD tools
in Step 1 are mostly sequential. To reduce the overall runtime, the
number of BlueShift iterations in Figure 4 must be reduced. This
can be done, for example, by adding more constraints at each it-
eration. In practice, our experiments included few constraints per
iteration to avoid overloading the commercial CAD tools, which
have a tendency to crash if given too many constraints.

7 Other Related Work
Several proposals have analyzed or improved the performance

of specific functional blocks, such as adders, under TS [2, 7].
However, work on general-purpose profile-driven design flows [2]
is just beginning. Of existing work, Optimistic Tandem [11] is
most closely related to BlueShift. It uses a profile-based approach
to select infrequently-used RTL statements to prune from the de-
sign. Also related, BTWMap [8] is a gate-mapping algorithm
(part of the logic synthesis flow) that uses a switching activity
profile to minimize the common-case delay.

8 Conclusion
Timing Speculation (TS) is a promising technique for boosting

single-thread performance. In this paper, we made three contribu-
tions related to TS. First, we introduced BlueShift, a new design
approach and optimization algorithm where the processor is de-
signed from the ground up for TS. The idea is to identify and
optimize the most frequently-exercised critical paths in the de-
sign, at the expense of the majority of the static critical paths. The
second contribution was two techniques that, when applied under
BlueShift, improve processor performance: On-demand Selective
Biasing (OSB) and Path Constraint Tuning (PCT). These tech-
niques target the most frequently-exercised critical paths, and ei-
ther add forward body bias to some of their gates or apply strong
timing constraints on them. The third contribution was a taxon-
omy of design for TS.
We applied BlueShift with OSB and PCT on modules of the

OpenSPARC T1 processor. Compared to a conventional Paceline
implementation, BlueShift with OSB sped up applications by an
average of 8%while increasing the processor power by an average
of 12%. Moreover, compared to a high-performance conventional
Razor implementation, BlueShift with PCT sped up applications
by an average of 6% with an average processor power overhead
of 23%. These figures assume that traditional voltage scaling is
applied to non-BlueShiftable components. However, BlueShift
provides a new way to speed up logic modules that is orthogonal
to voltage scaling. We are currently extending our work to show
the potential of combining both techniques.
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