
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

LOPASS: A Low-Power Architectural Synthesis
System for FPGAs With Interconnect

Estimation and Optimization
Deming Chen, Member, IEEE, Jason Cong, Fellow, IEEE, Yiping Fan, Member, IEEE, and

Lu Wan, Student Member, IEEE

Abstract—In this paper, we present a low-power architectural
synthesis system (LOPASS) for field-programmable gate-array
(FPGA) designs with interconnect power estimation and opti-
mization. LOPASS includes three major components: 1) a flexible
high-level power estimator for FPGAs considering the power
consumption of various FPGA logic components and intercon-
nects; 2) a simulated-annealing optimization engine that carries
out resource selection and allocation, scheduling, functional unit
binding, register binding, and interconnection estimation simul-
taneously to reduce power effectively; and 3) a -cofamily-based
register binding algorithm and an efficient port assignment al-
gorithm that reduce interconnections in the data path through
multiplexer optimization. The experimental results show that
LOPASS produces promising results on latency optimization com-
pared to an academic high-level synthesis tool SPARK. Compared
to an early commercial high-level synthesis tool, namely, Synopsys
Behavioral Compiler, LOPASS is 61.6% better on power consump-
tion and 10.6% better on clock period on average. Compared to
a current commercial tool, namely, Impulse C, LOPASS is 31.1%
better on power reduction with an 11.8% penalty on clock period.

Index Terms—Behavioral synthesis, field-programmable gate
array (FPGA), interconnect, power optimization.

I. INTRODUCTION

W ITH THE exponential growth of the performance and
capacity of integrated circuits, power consumption

has become one of the most critical constraining factors in
the IC design flow. Rigorous low-power design will require
power optimization through the whole design flow to achieve
maximal power reduction. A typical VLSI CAD flow goes
through multiple design stages, including system-level syn-
thesis, behavioral-level synthesis, register-transfer-level (RTL)
synthesis, logic-level synthesis, and physical design. The higher

Manuscript received April 28, 2008; revised August 28, 2008 and December
05, 2008. This work was supported in part by Altera Corporation, by the Na-
tional Science Foundation under Grant CCR-0306682, by the Microelectronics
Advanced Research Corporation/Defense Advanced Research Projects Agency
Gigascale Systems Research Center, and by Semiconductor Research Corpora-
tion-Global Research Collaboration under Grant 2007-HJ-1592.

D. Chen and L. Wan are with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
USA (e-mail: dchen@illinois.edu; luwan2@illinois.edu).

J. Cong is with the Computer Science Department, University of California
at Los Angeles, Los Angeles, CA 90095 USA (e-mail: cong@cs.ucla.edu).

Y. Fan is with AutoESL Design Technologies, Inc., Los Angeles, CA 90025
USA (e-mail: fanyp@autoesl.com).

Digital Object Identifier 10.1109/TVLSI.2009.2013353

the design level is, the larger the impact the design decisions
impose on the quality of the final product [27].

Our work focuses on power optimization at the behavioral
level. Behavioral synthesis (also called high-level synthesis) is
a process that takes a given behavioral description of a cir-
cuit and produces an RTL design to meet the area, delay, or
power constraints. It primarily consists of three subtasks: sched-
uling, allocation, and binding. Scheduling determines when a
computational operation will be executed, allocation determines
how many instances of resources (functional units (FUs), reg-
isters, and interconnection units) are needed, and binding as-
signs/binds operations, variables, and data transfers to these re-
sources. The number of resources may be limited, and the total
time (latency) to finish the operations can be constrained. These
make most of the problems difficult to solve optimally.

Field-programmable gate-array (FPGA) chips are generally
perceived as power inefficient because they use a large amount
of transistors to provide programmability. Due to the relatively
fixed logic and routing resources in a target FPGA platform, it
may be difficult to optimize power during the physical design
stage, while there are more power reduction opportunities
provided by behavioral and architectural design exploration.
However, high-level synthesis research specifically targeting
FPGA designs for low power is rare. Most previous high-level
synthesis techniques for FPGAs optimize objectives other than
power reduction. Reference [33] presents a scheduling algo-
rithm for dynamically reconfigurable FPGAs, where FUs can
be dynamically reconfigured during runtime to save chip area.
In [35], a layout-driven high-level synthesis approach is pre-
sented to reduce the gap between metrics predicted during RTL
synthesis and the measured data after FPGA implementation.
High-level synthesis for a multi-FPGA system is done in [14].
On the low-power part, [34] takes an RTL design and trades off
power with circuit speed by selecting different implementations
of components iteratively. However, the model presented is
quite simplistic and does not consider the power consumption
of the steering logic, such as multiplexers (MUXes), and in-
terconnect. Recently, Chen et al. [7] presented a simultaneous
resource allocation and binding algorithm for FPGA power
minimization, targeting a real FPGA architecture—the Altera
Stratix device [2].

In this paper, we will mainly study three interrelated topics
for FPGA power reduction: 1) high-level power estimation; 2)
simultaneous scheduling, allocation, and binding for power op-
timization; and 3) interconnection optimization. Correspond-

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

ingly, we build a high-level power estimator and an intercon-
nect-centric power optimization engine into our high-level ar-
chitectural synthesis system, i.e., LOPASS.

High-Level Power Estimation: To perform effective power
optimization in behavioral synthesis, we need to estimate
power consumption at a higher level of abstraction before the
low-level details of the circuit are finalized. An accurate and
efficient power estimator will provide invaluable directions for
the optimization process. As technology scales, interconnect
power consumption dominates the overall submicrometer
FPGA power consumption. For example, more than 80% of the
total power is consumed in interconnects (including clock net-
works) in 0.1- m technology for certain FPGA architectures
[23], [24]. Similar results were reported in other research, such
as [21] and [28]. Consequently, power estimation in behavioral
synthesis must consider the total wire capacitance. We develop
a high-level power estimator that takes into account special
FPGA architecture characteristics, the associated CAD design
flow, and the estimated total wire length in the FPGA design.
This power estimator is flexible and can support a variety of
FPGA architecture parameters. We use a fast switching activity
calculation algorithm [4] and enhance it to improve its flexi-
bility for handling different scheduling, allocation, and binding
situations.

Power Optimization Engine: Since the subtasks of behav-
ioral synthesis are highly interrelated and the objectives may
conflict with each other, sequentially optimizing them one by
one may not produce satisfactory solutions. The goal of our
power optimization is to search a combined solution space for
the subtasks in behavioral synthesis so that we can not only
minimize the power of FPGA designs but also meet the perfor-
mance/latency targets. To achieve this goal, we adopt a simu-
lated-annealing-based algorithm. Simulated annealing has been
applied in previous research to carry out scheduling, allocation,
and binding subtasks concurrently to reduce hardware area [11],
[20]. The key difference in our simulated-annealing engine is
that we generate the full data path after each move and capture
the overall cost, considering all the contributing factors in the
design.

Interconnection Optimization: The task of connecting the
FUs and registers together is called interconnection (or simply
connection) allocation. A MUX is a standard complex gate that
is often used in data-path logic to multiplex signals between FUs
and registers. The total interconnections in the design determine
the total MUX inputs or MUX connectivity. The objective of
interconnection allocation is to reduce the MUX requirement.
Register binding offers good opportunities for interconnection
sharing because it influences how the data are stored and trans-
ferred on the interconnections. In addition, assigning intercon-
nections to different input ports on FUs can also influence the
MUX sizes. Therefore, we work on register binding and port
assignment for MUX reduction. The experimental results show
that our solution provides significant improvement compared to
a previously published algorithm for MUX reduction.

In the following, Section II introduces a generic FPGA archi-
tecture and our overall LOPASS synthesis flow. Section III de-
scribes the power estimator. Section IV describes the optimiza-
tion engine, and Section V describes the multiplexer optimiza-

Fig. 1. CLB.

tion algorithm. Section VI discusses the experimental results,
and we conclude this paper in Section VII.

II. FPGA ARCHITECTURE AND OVERALL SYNTHESIS FLOW

A. FPGA Architecture

The dominant FPGA technology today is based on static
random-access memories (SRAMs), in which programmability
is realized using SRAM cells to implement programmable logic
elements (LEs), programmable I/Os, and routing elements. The
common approach for implementing a basic LE (BLE) is to
use a -input one-output lookup table (LUT) of SRAM
cells. A LUT can implement any Boolean functions of up to

variables by loading the SRAM cells with the truth table of
that function. A group of LUTs can form a configurable logic
block (CLB), as shown in Fig. 1. A size- logic block contains

BLEs. The block inputs and outputs are fully connected to
the inputs of each LUT.

The interconnect structure can be modeled as 2-D segmented
wire channels connected by programmable switch boxes.
The island-style FPGA, the most popular FPGA architecture,
surrounds each CLB with interconnects on the four sides of
the CLB and builds the connections in between through pro-
grammable connection boxes. Fig. 2 shows a high-level view of
an island-style FPGA, which is the architecture model adopted
by a popular academic tool VPR [3].

By varying the architecture parameters for logic blocks (
and) and routing resources, one can easily create many
different FPGA architectures. One key parameter for routing
is the wire segment length, which is defined as the number
of logic blocks that each wire segment spans. Wire segments
are connected by routing switches in the routing channels.
Programmable routing switches are either pass transistors or
tristate buffers. There are also switches (in the connection
boxes) connecting the wire segments to the logic block inputs
and outputs (Fig. 2). In [3], routing architectures are defined
by the parameters of channel width , switch box flexibility
(—the number of wires to which each incoming wire can
connect in a switch box), connection box flexibility (—the
number of wires in each channel to which a logic block input
or output pin can connect), and segmented wire lengths. In this

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: LOPASS: A LOW-POWER ARCHITECTURAL SYNTHESIS SYSTEM FOR FPGAS WITH INTERCONNECT ESTIMATION AND OPTIMIZATION 3

Fig. 2. Island-style FPGA [3].

paper, we will use logic block size as 4 and LUT input size
as 4. All the wire segments are length-1 segments, and all the

routing switches are tristate buffers. This architecture is similar
to the one used in [29]. We believe that our optimization results
hold for similar architectures with different logic or routing
parameters. We use 0.1- m technology in this paper, which is
the same as that used in [23] and [24].

B. Overall Synthesis Flow

Fig. 3 shows our overall LOPASS synthesis flow. A design
in a high-level description language is converted into a con-
trol–data flow graph (CDFG) or DFG as its internal represen-
tation. Our low-power optimization engine then takes the la-
tency or resource constraints from the user and starts the power
optimization process through simulated annealing. For the ex-
plored FU allocation and binding solutions that fulfill the la-
tency constraint, we examine their impact on the resource usage,
steering logic, and interconnections. All of these data are used
by the power estimator, which then feeds the estimated power
value back to the power optimization engine to guide the sim-
ulated-annealing process. Such a power optimization already
considers interconnection reduction. In addition, after the power
optimization engine exits, a more sophisticated postprocessing
algorithm will be conducted for further multiplexer and inter-
connection reduction. We then generate the RTL design and use
an RTL synthesis tool, namely, Design Compiler, from Syn-
opsys [32] to map the design into a gate-level netlist. Afterward,
we are able to report the delay, power, and area values of the de-
sign by a gate-level FPGA evaluation tool fpgaEva_LP2[24].
Notice that the high-level power estimator uses the same FPGA
architecture parameters as fpgaEva_LP2 does. Since LOPASS
closely reflects the modeled FPGA architecture, it can be used to
evaluate different FPGA architectures for their power efficiency
from a high-level design perspective. The gray areas in Fig. 3
are the focus of this paper. Other steps in the flow will also be
explained briefly later in this paper.

Fig. 3. LOPASS synthesis flow.

III. FPGA HIGH-LEVEL POWER ESTIMATION

We will first introduce three major components for our high-
level FPGA power estimation: wire length estimation, switching
activity estimation, and resource library characterization. We
then present how these components are weaved together to form
the estimator.

A. Wire Length Estimation

Wire length estimation before layout has been one of the most
important applications of Rent’s rule. Rent’s rule was first intro-
duced in 1960 by E. F. Rent of IBM, who published an internal
memorandum for log plots of “number of pins” versus “number
of circuits” in a logic design. Such plots tend to form straight
lines in a log–log scale and follow the following relationship:

(1)

where is the number of external pins of a logic network, is
the number of gates contained in the network, is the average
number of pins per gate in the network, and is Rent’s expo-
nent. A series of works followed. Particularly, the work [9] of-
fers a complete description of wires of different lengths for tar-
geted microprocessor architectures. It models the architecture
as homogeneous arrays of gates evenly distributed in a square
die. This architecture model reflects the characteristics of an is-
land-style FPGA if we treat each logic block (CLB) of the FPGA
as a multioutput gate in the model.

Fig. 4 shows the architecture model with gates [9] (note
that this is different from the in Fig. 1). The length of one
side of the square chip is in units of gate pitches. We will
apply the interconnect density function derived in [9]. Equation
(2) shows the details, where is the interconnect density func-
tion. gives the total number of interconnects be-
tween lengths and (is in units of logic block pitches
for our FPGA). In the equation, is the number of CLBs in the
design, is Rent’s exponent, is the fraction of the on-chip
terminals that are sink terminals, is the average fan-out,

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 4. Targeted architecture with � gates.

is the average number of input/output pins per CLB, and
represents a constant calculated using and (see the details
in [9]). Notice that is calculated by different formulas for
wire lengths between 1 and , and and , respec-
tively. For example, to compute the number of length-5 wires in
routing channels (signals travel across five logic blocks to reach
their destinations), we use . After obtaining the
numbers of wires for all the lengths (from 1 up to), we
sum all the wire lengths together as the total wire length esti-
mation. We use a Rent’s exponent extracted from [29] because
it explores a similar FPGA architecture, and the placement and
routing flow is quite similar. This is important because is an
empirical constant that closely relates to the architecture and de-
sign flow. The proposed wire estimation model is very general
for total wire length estimation as long as Rent’s exponent is
derived accurately. In our paper, a typical value of is 10.5, a
typical value of is 1.8, and is 0.62. The experimental re-
sults show that this wire estimation model is valid, and its pre-
diction is reasonably accurate compared to the final total wire
length after placement and routing.

Region I:

Region II:

such that (2)

Note that this total wire length estimation is for global wires
used in the routing channels, which does not include the wires
used within CLBs. We call the wires within CLBs local wires,
which can be easily estimated by the size of CLBs using the
CLB architecture shown in Fig. 1.

B. Switching Activity Estimation

This section discusses an efficient switching activity cal-
culator using CDFG simulation, extending the method from
[4] that performs simulation just once at the initialization and
afterward computes switching activities for any legal binding
without repeating simulations.

Given a scheduled and bound CDFG , every node (or oper-
ation) of is bound to an FU and scheduled to a certain control
step. Many operations may share a common FU. In other words,
an FU will execute a sequence of operations in a fixed order after
binding and scheduling. For an FU , we define
as the toggle count from executing operation to operation

. This number represents the input transitions when the FU
switches the execution from to . Notice that has two
ports. For simplicity, we use to represent the input
toggle counts of both ports. Let
be a sequence of stimuli enforced on the primary inputs of .
By performing functional simulation on , with primary input
stimulus , we can obtain input bit vector

for operation . is computed based on
the propagation of through the design when the propaga-
tion reaches the internal operational node . For an FU , let

be the operation sequence in the
execution order (to are bound to). , for

, and , under this primary-input stim-
ulus sequence, are then defined as follows [4]:

(3)

(4)

where , and represents the Hamming dis-
tance between bit vectors and . Notice that
represents the toggle count between and when the exe-
cution finishes and begins a new iteration starting with
with the bit vector .

The switching activity of the inputs of an FU is the ratio
of the number of bit flips observed on its inputs between cycles
over the maximum possible number of bit flips. is formally
defined as

(5)

where Bit_width is the input vector width of .
In [4], a matrix of is constructed after scheduling but

before binding and is used to calculate for every possible
binding solution. Two operations are compatible if they can be
bound to the same FU. For two compatible operations and

, there will be two entries and in the pre-
calculated matrix. Supposing that is scheduled before ,
the value of matrix element is calculated with (3). The
value of is calculated from (4). After binding, the op-
eration sequence is known for every FU, and every value is
looked up in the matrix. The input switching activity can be cal-
culated accordingly based on (5). The output switching activity
can be computed following a similar approach using a ma-
trix [4]. Scheduling cannot be changed after the ma-
trices are constructed in [4].

To make switching activity estimation more flexible, we ex-
tend the matrix to support every possible scheduling and
binding situation. That is, for every two compatible operations

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: LOPASS: A LOW-POWER ARCHITECTURAL SYNTHESIS SYSTEM FOR FPGAS WITH INTERCONNECT ESTIMATION AND OPTIMIZATION 5

and , we precalculate the values for both scheduling
orders and , using (3) and (4), so that
there will be two values for each scheduling order. With this en-
hanced matrix, regardless of how and are scheduled and
bound, we can find the entries in the matrix when calculating

. For the output-signal toggle count and the output
switching activity , we use a similar method. An FU is a
subcircuit. Because we do not have the detailed information of
the internal structure of the FU, we do not have switching activ-
ities of the internal gates of the FU. An intuitive way to estimate
the switching activity of an FU is to use .

The total switching activity of a scheduled and bound CDFG,
i.e., , is the weighted average of switching activities for
all used FUs. We use a larger weight for multipliers because the
switching power of a multiplier is much larger than that of an
adder per switch. Therefore, the switching activities of the mul-
tipliers are given more weight for the overall design. Equation
(6) shows the details

(6)

where is the number of adders/subtractors and is the
number of multipliers used in the design (the set of benchmarks
that we use only contain addition/subtraction and multiplication
operations, while the equation can be easily extended to support
more types of FUs). is the weight, which represents a typical
ratio of the dynamic power of a multiplier over the dynamic
power of an adder based on resource characterization (more
details in the next section).

C. Resource Library Characterization

We use a resource library that is derived from the DesignWare
libraries available from Synopsys [32]. Therefore, our charac-
terization for the resources closely correlates to the character-
istics of real-life implementations of the resources. We provide
different resource versions for implementing the same opera-
tion type to offer larger design flexibility. These resources have
different area, delay, and power characteristics. Given different
user requirements, the behavioral synthesis should be able to
find a good tradeoff between latency and power, where latency
is defined as the product of the clock period and the total number
of clock cycles used for the design.

Under this assumption, we select adders, multipliers, and
multiplexers and characterize their area, delay, and power.
Fig. 5 shows the flow for this characterization. A DesignWare
IP component goes through Synopsys Design Compiler for
synthesis and mapping. We use a generic lsi_10k library avail-
able in the Synopsys tool. Design Compiler transforms the IP
core into a gate-level netlist consisting of only two-input gates
and flip-flops. The netlist is in a structured VHDL format. We
then convert the design into the Berkeley logic interchange
format (BLIF). Then, fpgaEva_LP2 takes the gate-level BLIF
design, goes through synthesis and physical design stages, and
reports the delay, area, and power values of the component.

Fig. 5. Resource characterization flow.

TABLE I
CHARACTERIZATION DATA WITH FPGA IMPLEMENTATION (0.1-�m

TECHNOLOGY)

Table I shows some of the characterization data. The area
(in terms of number of CLBs) required for the FPGA imple-
mentation of the resource, the critical path delay after place-
ment and routing, and the total power values are reported. The
average number of input/output signals per CLB and the av-
erage gate-fan-out number of resources are also recorded be-
cause they are used in the calculation of the wire distributions
(Section III-A). The delay values would determine the clock pe-
riod of the design. Among all the resources used for a design,
the minimum delay value determines the clock period, and other
resources with larger delay values will run in a multicycle mode.
For example, if a design only uses carry look-ahead adders and
Booth-recoded Wallace tree multipliers, the clock period of the
design will be set to 11.78 ns. As a result, the adder takes one
clock cycle to finish its execution, while the multiplier takes two
clock cycles to finish its execution.

In our benchmarks, the output of a multiplier never exceeds
24 b, and the input of a multiplier never exceeds 18 b. Therefore,
we use 18-b multipliers and 24-b adders. The power values can
be used to estimate the weight in (6). However, they are not
directly used in our power estimator because they only represent
the atomic power values of individual resources by themselves.
To have an accurate power estimation for the whole design, our
power model considers detailed power characterization for LEs
used by the entire design in both FUs and interconnection units

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

(MUXes). We also estimate the power of global wires incurred
for the connections of these elements. Details will be presented
in the next section.

D. Put It All Together: High-Level Power Estimator

We consider both dynamic and static powers for various
FPGA components in our power model. FPGAs contain
buffer-shielded LUT cells with fixed capacitance load. There-
fore, we can use precharacterization-based macromodeling to
capture the average switching power per access of an LUT and
register. As for interconnects, a switch-level calculation can
be used because their capacitance cannot be predetermined.
This mixed-level FPGA power model is similar to that used in
the gate-level power model in [23] and [24]. The difference is
that we estimate power at a higher level, which is much faster
than a gate-level power estimator. Since the high-level power
estimator is used to guide the power optimization engine, it has
to be called by the power engine very frequently. Therefore, a
fast power estimator with sufficient accuracy is helpful for the
overall power optimization.

Our high-level power model can be summarized in (7) and
(8). The dynamic power is contributed from (for all the
LUTs contained in the design), (for all the registers),
(for local wires within the CLB), and (for global routing
wires)

(7)

(8)

is calculated through , where
is the total number of LUTs in the design; is the estimated
switching activity of the design (Section III-B); is the
energy consumption per switching of the LUT [23], [24]; and
is the frequency. is calculated similarly through

. For the wires, and are calculated through
the formula , where and are the same
as before, is the supply voltage, and is the estimated
wire capacitance for either local wires within the logic block or
global wires in the routing tracks. The local wires in a CLB can
be estimated through the CLB architecture shown in Fig. 1 (see
[23] and [24] for a detailed CLB structure). The capacitance of
local buffers (LBs) and local multiplexers is lump-summed into
the local . The global wire length estimation is carried out
using the method in Section III-A. The capacitance of buffers
and/or pass transistors (in switch boxes and connection boxes)
in global interconnects is lump-summed into the global
according to the routing architecture.

In (8), the static powers of all the used LUTs, FFs, LBs, and
global buffers (GBs) are included. The static powers of these
circuit components are borrowed from [23] and [24], where the
authors obtained static-power macromodels based on SPICE
simulation. We also calculate the numbers of idle components
through our architecture model and the estimated chip size of
the FPGA and count their static powers as well.

Since we only perform initial circuit simulation once, and
the switching activities for different binding and scheduling
scenarios can be estimated by simple lookups in the and

matrices, our high-level power estimator runs extremely
fast—almost close to constant time, which is the key needed to
speed up the power optimization engine.

IV. POWER OPTIMIZATION ENGINE

Before we introduce the power optimization engine, we will
examine in the following some of the FPGA’s unique features
that will help us gain some insights for designing efficient opti-
mization algorithms:

1) FPGAs offer an abundance of distributed registers;
2) FPGAs have no efficient support for wide MUXes

(Table I);
3) smaller numbers of FUs and/or registers may not corre-

spond to a smaller area or power.
These facts will influence register allocation and binding and

steering logic allocation during behavioral synthesis. Particu-
larly, since FPGAs are not efficient in implementing wide-input
MUXes due to limited routing resources, solely working for a
smaller number of FUs may lead to unfavorable solutions be-
cause it may generate a larger number of wide-input MUXes
that outweigh the gain on FU reduction. Therefore, we need an
algorithm that explores a large solution space considering mul-
tiple constraining parameters that influence FU and register al-
location, binding, MUX generation, and scheduling.

As mentioned in the Introduction, we adopt the simulated-
annealing process as our power optimization engine. Its basic
feature is to allow hill-climbing moves to explore the solution
space. The probability of accepting these moves is controlled
by a parameter that is analogous to temperature in the physical
annealing process. Temperature decreases gradually as the an-
nealing process proceeds. We start our annealing process with
an initial FU allocation and binding solution generated by a
simple greedy algorithm under the latency constraint. The en-
gine then performs five types of binding moves to gradually
reduce the overall cost. The cost is the total power consump-
tion calculated by the high-level power estimator. The moves
are randomly picked, and the targeted FU(s) for each move is
randomly picked as well. The moves are as follows.

1) Reselect: Select another FU of the same functionality but
with a different implementation. For example, select a
carry look-ahead adder to replace a Brent–Kung adder.
The operations that are bound to the adder stay unchanged.

2) Swap: Swap two bindings of the same functionality but
different implementations. It is equivalent to two reselects
between two FUs in each direction.

3) Merge: Merge two bindings into one, i.e., the operations
that are bound to two FUs are combined into one FU. As a
result, the total number of FUs decreases by one.

4) Split: Split one binding into two. It is the reverse action of
merge. As a result, the total number of FUs increases by
one. The operations of the original binding are distributed
into the new bindings randomly.

5) Mix: Select two bindings, merge them, sort the merged op-
erations according to the decreasing order of their timing
slacks, and then split the operations. For example, if there
are operations after sorting, operations 1 to will
form one binding with one FU, and the rest of the opera-
tions will form another binding.

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: LOPASS: A LOW-POWER ARCHITECTURAL SYNTHESIS SYSTEM FOR FPGAS WITH INTERCONNECT ESTIMATION AND OPTIMIZATION 7

Fig. 6. Power optimization engine.

Each of these moves has its own attributes. Reselect may pick
a smaller FU (possibly larger delay) to reduce power if the la-
tency constraint can still be met. Mix may lead to rebinding the
operations that have larger slacks into a pipelined FU such as
mul18 bit_wall_s4 (Table I), which consumes much less power
but has a longer latency (four cycles to finish the operation).
Split will be disabled when temperature is low, so the allocation
and binding solution will not be dramatically changed. After
each move, resource-constrained list scheduling [10] is called
to verify the total latency. If latency is violated, the move is dis-
carded. To efficiently estimate the steering logic for the current
binding in minimal runtime, a left-edge algorithm [10] is used
for register binding. Next, FUs and registers are connected to-
gether through multiplexers. The characteristic data of the cur-
rent move are fed into our power estimator to estimate the cost.
The annealing process exits when temperature is low enough.

Fig. 6 shows the overall flow of the optimization engine in a
block diagram. After the simulated-annealing-based power opti-
mization exits, we redo register binding for the purpose of mini-
mizing the total multiplexer usage. A port assignment algorithm
further reduces the sizes of multiplexers. These two optimiza-
tion procedures are not included in the annealing schedule be-
cause they take significant runtime and may make the overall
runtime of the annealing schedule intolerable. We will present
these multiplexer optimization algorithms in their entirety in the
next section.

V. MULTIPLEXER OPTIMIZATION FOR INTERCONNECTION

REDUCTION

In this section, we present a-cofamily-based algorithm to
carry out the register binding task, which guarantees a min-
imum number of registers while reducing the MUX usage.
We also implement a port assignment algorithm that further
reduces the total MUX inputs efficiently after register binding.
Next, we will first introduce some related definitions and the
problem formulations. Then, we present our register binding
and port assignment algorithms separately.

A. Definitions and Problem Formulation

Given a DFG, , let and
, and represents the edge

from to . Node set corresponds to operations, and edge
set A corresponds to data flowing from one operation to another.
After scheduling, the lifetime of each data value (or variable) in
the DFG is the time during which the data value is active (valid)
and can be defined by an interval [birth time; death time]. Birth
time is the control step when the variable becomes available.
For example, if an addition can finish execution in one clock
cycle, and it is scheduled to control step , the birth time of
the variable generated by will be . Death time is the
control step when the variable is last used (the variable can flow
to multiple places through different data edges). A variable stays
in a single register during its entire lifetime until it is replaced by
another variable. A compatibility graph for these
variables can then be constructed, where vertices correspond to
variables, and there is a directed edge between
two vertices if and only if their corresponding lifetimes do not
overlap, and variable comes before . In such a case, we
call variables and compatible with each other, and they can
be bound into a single register without lifetime conflicts. Let

denote the weight of edge , which represents the cost of
binding and into a single register. This cost will be the
estimated interconnection cost in our case.

The initial design input comes out of the power optimization
engine, where FU allocation/binding/scheduling operations are
all done. Register allocation and binding are also done. We
change this initial solution with two additional optimization
steps: redoing register binding and adding port assignment
for the purpose of reducing MUX inputs. We first formally
define the register binding and port assignment problems. Both
problems are NP hard [26].

Register Binding for MUX Reduction: Instance: A scheduled
DFG , a set of registers , a set of FUs , an FU
binding , and
a positive integer .

Question: Is there a register binding
such

that the number of interconnections between registers and FUs
is not larger than ?

Port Assignment for MUX Reduction: In-
stance: A scheduled DFG , a set
of registers , a set of FUs , an FU binding

,
a register binding

, and a positive integer .
Question: Is there a port assignment, i.e., for every operation

that is bound to an FU , considering the two respective input
registers containing the two operands for the operation, whose
input register should be connected to which port of , such that
the number of total interconnections between all the input reg-
isters (for all the operations that are bound to) and is not
larger than ?

B. Register Binding With -Cofamily Formulation

1) Problem Reduction: We state our register binding objec-
tive as follows. Given a compatibility graph , find

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 7. POSET and its split graph. (a) POSET � . (b) Split graph ��� �.

a subset of that covers all the vertices in in such a way
that the total sum of the weights of all the edges in the subset is
the minimum, with the constraint that all the vertices can only
be bound into as many as registers as possible. If we find such
a subset, we say that we carry out register binding of into
registers with the minimum total weight.

We formulate our register binding problem as a problem of
calculating the minimum weighted cofamilies of a partially or-
dered set (POSET). A POSET is a collection of elements with
a binary relation defined on that satisfies the following
conditions [25]:

1) reflexive, i.e., for all ;
2) antisymmetric, i.e., and ;
3) transitive, i.e., and .
We say that and are related if we have either or

. An antichain in is a subset of elements such that no
two of them are related. A chain in is a subset of elements such
that every two of them are related. A -family in is a subset of
elements that contains no chain of size , and a -cofamily
in is a subset of elements that contains no antichain of size

[16]. We show an example in Fig. 7. In Fig. 7(a), edges
represent relations among the elements. The POSET contains a
3-family and a 2-cofamily. We can associate weights for -co-
families, where the minimum weighted -cofamilies are partic-
ularly important to us. We now build the relationship between a
compatibility graph and a POSET.

Given a compatibility graph , let POSET
such that contains all the vertices of , and

the compatibility relation defined in can be the relation
on the elements of . It is easy to show that the compatibility
relation is reflexive, antisymmetric, and transitive. By such, an
edge of represents a relation between the two
elements of as . Therefore, there is a one-to-one
correspondence between one node in and one element in ,
and between one edge in and one in . We also assign
the weight on to the relation . There is no weight on
the element itself. We have the following result.

Theorem 1: Register binding on a compatibility graph
into registers is equivalent to finding disjoint chains in the
POSET , and each chain contains all the variables that are
bound into one of the registers.

Proof: A register binding solution gives a grouping of vari-
ables, and each group is assigned (bound) to a different reg-
ister. All the variables assigned to a register are compatible with
one another, and their lifetimes are sequential and not overlap-
ping. Therefore, the elements corresponding to the variables in
a group form one chain in the POSET. Since there is no vari-
able that is assigned to more than one register, the grouping de-
termines a disjoint chain in the POSET. The direction from
disjoint chains to groups of variables holds true as well.

Theorem 1 can be shown in Fig. 7(a). The solution with an op-
timal number of registers (in this case, two) is obtained by the
partition of two disjoint chains (dashed ovals) in the POSET.
Variables in one chain can then be bound into one separate reg-
ister.

Let represent the weight of a chain in a POSET. Suppose
that , ,
where is the weight assigned to the relation

. Register binding of the nodes in into registers with
the minimum total weight is equivalent to finding disjoint
chains in the POSET with the minimum total weight from the

chains. There is an important fundamental result on POSETs
due to Dilworth [12], which indicates that any -cofamily in a
POSET can be partitioned into at most disjoint chains. A
chain is nontrivial if it contains at least two elements. If an el-
ement is not related to any other elements in the POSET, we
say that forms a trivial chain just by itself. We say that a -co-
family is nontrivial if it can be partitioned into exactly disjoint
nontrivial chains. We have the following corollary.

Corollary 1: The minimum weighted nontrivial -cofamily
with at least one antichain of size in a POSET can be
partitioned into exactly disjoint nontrivial chains with the
minimum total weight to cover every element in , when the
weights on the relations are all negative values.

Proof: It is a simple extension based on the Dilworth the-
orem. Any -cofamily with at least one antichain of size can be
partitioned into disjoint chains. In other words, the disjoint
chains form a -cofamily for the POSET. If the disjoint chains
hold the minimum total weight, then the -cofamily holds the
minimum total weight as well. The minimum weighted -co-
family will cover all the elements in . If it is not the case,
adding more elements into the -cofamily will always reduce
the total weight.

Therefore, our goal is to find the minimum weighted -co-
family in (or the minimum weighted disjoint chains in).
In [8], an algorithm based on network flow theories was pre-
sented to calculate the maximum node-weighted -cofamilies
(weights on nodes only). In this paper, we show how to convert
the calculation of the minimum relation-weighted -cofamily
into the calculation of the minimum-cost flow in a network.

First, we construct our network flow graph, the split graph
, as follows. For each element in , we introduce two

vertices and in and a directed edge . We
introduce a directed edge in if

. Moreover, we introduce two more vertices (source) and
(sink) in and add edges and for each

. Fig. 7(b) shows the corresponding split graph of POSET
of Fig. 7(a). We set the capacity of each edge to be one and

the cost of each edge , denoted as , to be

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: LOPASS: A LOW-POWER ARCHITECTURAL SYNTHESIS SYSTEM FOR FPGAS WITH INTERCONNECT ESTIMATION AND OPTIMIZATION 9

if or
if
if

(9)

where is a negative value (to be covered in the next sec-
tion). Therefore, the cost of the flows in will always be
smaller by going through edges instead of edges

. We have the following theorem.
Theorem 2: Let be a POSET of elements, and the largest

antichain in has size . Then, has a -cofamily that in-
cludes all elements with the minimum total weight if and only
if the split graph has an -flow of the minimum total
weight.

Proof: We will first show that the theorem holds when
has a nontrivial -cofamily, i.e., it can be partitioned into non-
trivial chains. We then extend our result to -cofamilies that con-
tain trivial chains.

(If) Suppose that has a -flow of minimum
total weight (minimum-cost -flow) and that there are
no flows that pass through edges . Therefore, there are

numbers of flows, and each of them passes a separate
edge like since all the edge capacities are one.
These flows will form disjoint paths in (except the
starting node and the ending node). By Corollary 1, the min-
imum-weighted nontrivial -cofamily can be partitioned into
disjoint nontrivial chains with the minimum weight. The chains
can be formed as follows. We start with elements in , i.e.,

single-element chains. For each edge with a
unit flow in , we join element and element together,
which reduces the total number of chains by one. Along this
process, the chains formed are all disjoint with one another. We
picked number of such edges, so the number of chains
left is eventually . By such, disjoint chains
are formed, and each chain is nontrivial. Since the -flow
has the minimum total weight, the -cofamily thus formed has
the minimum total weight as well.

(Only If) Suppose that the disjoint nontrivial chains are
. Let denote the size of . Then,
. The total number of edges in the chains is

, which represents an -flow in
with the same edges. If there is an element that is not

related to any of the other elements in the POSET, will form
a trivial chain just by itself. The rest of the elements can
form nontrivial chains. The minimum-cost -flow will
now form nontrivial chains with the
minimum total weight. Adding into the solution, we form
disjoint chains with the minimum total weight (contributes no
weight to the -cofamily). Obviously, this result can be extended
to -cofamilies that contain multiple trivial chains.

Corollary 2: Let be the minimum number of registers re-
quired to bind all the variables in the compatibility graph

; the solution of the minimum-weighted -co-
family in the corresponding POSET generates the solution
to fulfill the objective of our register binding problem.

Proof: Direct derivation from Theorems 1 and 2.
Our task is then to find the minimum-cost -flow in the

network . Its runtime complexity is

[1], where is an upper bound on the largest
supply/demand and largest capacity in the network. In our case,

. After we obtain the minimum-cost flow, each edge
with a unit flow in , , represents that variables

and should be bound together into the same register. If
there is a flow for , then it means that occupies
a register just by itself. In the example shown in Fig. 7(b), if
we have a unit flow on each of the following edges— ,

, and , the binding solution will be equivalent
to the solution shown in Fig. 7(a), i.e., variables , , and
will be bound to one register, and variables and will be
bound to another register. In the next section, we will describe
how to estimate weights on the edges through cost function
formulation.

Cost Function Formulation: In this section, we provide some
details for calculating the edge weight if and are to be
bound together. A MUX occurs in two situations: 1) It is intro-
duced before a port of an FU when more than two registers
feed data to this port, and 2) it is introduced before a register

when more than two FUs produce results and store them into
this register. Different register bindings will produce different
multiplexing situations.

Fig. 8 shows an example. Case 1 binds the two variables
driven by FUs and into two separate registers. By such,
it saves a MUX between the connections of and their
output registers. However, two more MUXes will be required
for the connections of the two registers to the fan-out
FUs (we call them fan-out_FUs) and . On the other hand,
Case 2 binds the two variables from and into a single reg-
ister, and as a result, a MUX is generated between and
register . Yet, it is a better solution than Case 1 because there
are no MUXes required between and fan-out_FUs .
Note that if and are actually the same FUs, then there
will not be a MUX generated in Case 2, which makes Case 2 an
even better solution. However, there are situations where Case
1 is better than Case 2, particularly when and are dif-
ferent. A simple case happens when none of the fan-out_FUs in
Case 1 requires a MUX on its ports, so it uses one less MUX
than Case 2. In the real situation, it is hard to predict which case
is better because it all depends on the original DFG data flow,
scheduling results, and the FU binding solution. The cost func-
tion is defined as follows:

(10)

where is the number of MUXes saved (or MUXes wasted,
i.e., becoming negative) by binding and into a single
register (Case 2) rather than not binding them into a single reg-
ister (Case 1); is the total number of connections between
registers and fan-out_FUs; is the total number of
fan-out_FUs involved during this attempted binding of and

; and and are positive scaling constants (set as 0.25 and
0.15, respectively, through an empirical study). For the example
in Fig. 8, , , and . The term

is trying to capture the overall connectivity situation of
the fan-out_FUs so that some global optimization criteria can
be considered. It is needed because not all of the fan-out_FUs
that connect to require a MUX on their ports. If its

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. One example of multiplexing situations.

Fig. 9. Cases of a register connecting to both ports on an FU.

value is large, Case 2 is preferred, i.e., and are to be
bound into a single register to reduce the total connectivity of
the fan-out_FUs. The term is trying to capture the overall
connectivity from another angle, i.e., if more fan-out_FUs are
involved, Case 2 is preferred. Nonetheless, is set as the
overwhelming factor in this cost function because it directly re-
flects the MUX usage of this binding. The smaller the cost, the
better to bind and together. In other words, the larger the

, the better.

C. Port Assignment

Port assignment is an important technique for reducing MUX
connections between FUs and registers. However, effective
heuristics have not been proposed to practically tackle this
difficult problem during high-level synthesis. We will apply
a greedy algorithm for port assignment, which is shown very
effective in our experiments.

In [26], an important lemma proves that finding the minimum
connectivity port assignment is equivalent to minimizing the
number of input registers that are connected to both ports of an
FU . An optimal solution will be automatically obtained for

if there are no input registers that drive both ports of . We
will use this lemma to guide our port assignment solutions.

We observe two cases where a register is connected to both
ports of . In Fig. 9, the register in Case 1 contains variables
and , and the operations on FU are and .
Because of the bad port assignments of and , this register
has to drive both ports of and renders a total of four connec-
tions. The register in Case 2 contains a variable , and the three
operations, together with the current port assignments, force
to drive both ports of and render five connections.

Fig. 10. Operand swapping for the two cases.

Fortunately, we observe that the interconnection number of
both cases can be reduced using a simple operation of operand
swapping. For Case 1, we can swap the port assignments of
and , while for Case 2, we can swap the port assignments of
and . The solutions are shown in Fig. 10. In our port assignment
algorithm, we first provide a solution done by a random port as-
signment. Next, we find all the registers that drive both ports of
their corresponding FUs and perform operand swapping. There
are some situations where operand swapping will not help. For
example, in Case 2, if we encounter a series of circular opera-
tions such as , , and , then the register has to drive
both ports. We check these situations first so that the operand
swapping procedure exits early for these situations.

VI. EXPERIMENTAL RESULTS

LOPASS takes in a design and runs through the architectural
synthesis stages shown in Fig. 3. The allocation, binding, and
scheduling information is back-annotated to the DFG’s edges
and nodes. The backend of our architectural synthesis system
extracts this information to construct the data path and con-
troller. The data path, including instances of FUs, registers, and
multiplexers, is generated as a structural VHDL description. The
generated FSM controller is in a classical synthesizable RTL
VHDL form. The controller provides control signals for every
FU, register, and multiplexer. Register read/write or clock en-
able/disable operations are also decided by the control signals.
We then feed both the data path and control of the design to
Synopsys Design Compiler for synthesis and mapping. Design
Compiler transforms the RTL design into a gate-level netlist in
VHDL format. After the VHDL-to-BLIF conversion, the design
is fed into fpgaEva_LP2 [24]. We set fpgaEva_LP2 to use the
same architecture model as that used in LOPASS.

A set of data-intensive benchmarks are used in our experi-
ments. The pure DFG programs are from [30], including sev-
eral different DCT algorithms, such as pr, wang, and dir, and
several DSP programs, such as mcm, honda, and chem. Table II
shows the benchmark information. Each node is either an ad-
dition/subtraction or a multiplication. We first show the experi-
mental data on the high-level power estimator. We then compare
our MUX reduction results to those of a previous algorithm [18].
To evaluate LOPASS, we compare our results with an academic
tool SPARK [17]. We also compare LOPASS against commer-
cial high-level synthesis tools Synopsys Behavioral Compiler
(S-BC) [32] and Impulse C [19].

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: LOPASS: A LOW-POWER ARCHITECTURAL SYNTHESIS SYSTEM FOR FPGAS WITH INTERCONNECT ESTIMATION AND OPTIMIZATION 11

TABLE IV
TOTAL NUMBER OF MUX INPUTS AND RUNTIME OF DIFFERENT ALGORITHMS

TABLE II
BENCHMARK INFORMATION

TABLE III
WIRE LENGTH AND POWER ESTIMATION

A. Power Estimation

Table III shows the comparison results between our estimated
wire length and power and those reported by fpgaEva_LP2 after
placement and routing. We observe that wire length is 13.7%
(absolute value average) away from reality. This indicates that
Rent’s rule-based estimation method is effective to estimate
wire length for FPGA designs before layout information is
available. Our high-level power estimation also works relatively
well with a 14.4% average error (absolute value average). Since
behavioral-level estimation is two levels higher than gate-level
estimation, we believe that these results are very encouraging.

B. Multiplexer Optimization Results

To examine the effectiveness of our MUX optimization al-
gorithms, we conduct experiments to compare our solutions to
those generated by a previously published algorithm in [18].
Table IV shows the total MUX input results for -cofamily with
pa (port assignment), -cofamily without pa, bipartite without

pa [18], and left edge without pa. The runtime results of these
algorithms are also shown. A zero runtime means that it is less
then 0.5 s. Columns 6, 9, and 12 show the comparison data
using -cofamily with pa as the base. We can see that, overall,

-cofamily w/o pa, bipartite w/o pa, and left-edge w/o pa al-
gorithms are 2.2%, 24.7%, and 29.6% worse, respectively, than

-cofamily with pa. The gain is mainly coming from register
binding because port assignment just provides a small improve-
ment. This shows that our -cofamily-based algorithm is able to
reduce the interconnection cost much more effectively than the
bipartite-based algorithm.

To evaluate the impact of multiplexer optimization, we carry
out two experiments. One takes the RTL outputs of regular
LOPASS with MUXes optimized under Cofamily with pa.
Another takes the RTL outputs of LOPASS under Leftedge
w/o pa. We then go through fpgaEva_LP2 evaluation flow
for both cases. On average, LOPASS with Leftedge w/o pa is
9.2%, 1.5%, and 9.8% worse compared to regular LOPASS in
terms of wire length, performance, and power consumption,
respectively. Details are omitted due to page limitation.

We also evaluated the effectiveness of our port assignment
heuristic. We first computed the upper bound of the total pos-
sible reductions of MUX inputs for all the benchmarks by port
assignment. This upper bound is obtained assuming that all the
registers that initially drive both ports of FUs can be changed
to only driving a single port through port reassignment. We ob-
serve that our heuristic achieved a 54.8% MUX-input reduction
of the upper bound value.

C. LOPASS Compared to SPARK

SPARK [17] is a recent behavioral synthesis system focusing
on scheduling combined with code transformation techniques.
The core scheduling and allocation module contains two parts:
the engine combining scheduling with code transformations,
and the toolbox containing various compiler passes and trans-
formations.

Although SPARK does not target low-power designs, it is
worthwhile to compare the synthesis results with LOPASS for
a preliminary evaluation of LOPASS. In this experiment, we
intentionally enforce the same resource constraints (numbers
of adders and multipliers) for SPARK and LOPASS and check
the final scheduling results. We set SPARK to optimize latency,
given the resource constraints. The SPARK release used in this
experiment is version 1.2 for Linux. In Table V, the data before

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE VII
LUT NUMBER, DELAY, AND POWER COMPARISON BETWEEN S-BC AND LOPASS

TABLE V
ALLOCATION AND SCHEDULING RESULTS OF SPARK/LOPASS

TABLE VI
BINDING AND SCHEDULING RESULTS (S-BC/LOPASS)

(after) the forward slash “/” is generated by SPARK (LOPASS).
For honda and steam, SPARK fails to produce results. For other
cases, SPARK sometimes produces much worse latency (e.g.,
163 versus 57 for chem) or slightly better results (e.g., 33 versus
36 for mcm). Overall, LOPASS is 9.1% better in terms of latency
optimization.

D. LOPASS Compared to Behavioral Compiler

To further validate LOPASS, we compare LOPASS with
an early commercial tool—Synopsys Behavioral Compiler
(S-BC). We set the high optimization effort option for S-BC
so that it returns the best solutions. S-BC does not consider
the specific features of FPGAs. Table VI shows the allocation
and scheduling results from both S-BC and LOPASS. The
data before (after) the forward slash “/” is generated by S-BC
(LOPASS). We can observe that LOPASS is able to schedule
each design using the same or smaller number of clock cycles.

LOPASS runs much faster for the two large designs: chem
and steam (experiments carried out on a 750-MHz SunBlade
1000 machine). LOPASS also uses a much smaller number of

resources (adders and multipliers). There is no easy way to
collect the multiplexer usage for S-BC’s solutions, so it is not
listed in these tables. At this point, we cannot directly claim that
LOPASS is much better on area and power because LOPASS
only uses FUs of fixed bit widths. However, S-BC usually uses
FUs of different bit widths for constant handling and timing
optimization. Therefore, although S-BC uses more multipliers
and adders than LOPASS, the sizes of these operators can be
smaller than those used in LOPASS. We need to verify the final
area, power, and delay results using our evaluation flow.

Table VII shows the area, delay, and power comparison re-
sults. The RTL designs generated from both S-BC and LOPASS
for the same benchmarks are evaluated by fpgaEva_LP2. Area
is the number of CLBs used in the design. On average, our so-
lution reduces the number of CLBs by 57.3% and reduces the
total power consumption by 61.6% compared to S-BC’s solu-
tion. We also reduce the critical-path delay by 10.6%.

E. LOPASS Compared to Impulse C

We also compare our results with that of a popular C-to-
FPGA commercial tool, i.e., Impulse C [19]. To use Impulse C,
an application needs to be partitioned into software (SW) and
hardware (HW) parts in C language. The SW part is respon-
sible for preparing inputs for HW and gathering outputs from
HW. The HW part implements the compute-intensive portion.
The SW and HW parts communicate through a dedicated bus
(up to 32 b in width). Impulse C can automatically generate
first-in–first-out or memory blocks to temporarily hold input
data when necessary.

Table VIII shows the results from Impulse C. It can be seen
from the table that much more adders and multipliers are needed
in these solutions from Impulse C. It is obvious that Impulse C’s
objective is not resource sharing or register sharing but running
the operations in a streaming fashion. As a result, each defini-
tion of variable or operation is turned into a dedicated register
or FU. The total numbers of adders and multipliers in the solu-
tion are equal to the numbers of additions and multiplications
in the original C specification, respectively. Impulse C does
have bit-width analysis capability, so some adders/multipliers
may use smaller bit widths. Note that we did not try the largest
benchmarks (steam and chem) because they simply follow the
same trend, and the nonsharing solutions of these largest bench-
marks with hundreds of adders and multipliers are already on the
boundary of exceeding the logic capacity of many FPGA chips.

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: LOPASS: A LOW-POWER ARCHITECTURAL SYNTHESIS SYSTEM FOR FPGAS WITH INTERCONNECT ESTIMATION AND OPTIMIZATION 13

TABLE X
QUARTUS II FPGA IMPLEMENTATION RESULTS FOR IMPULSE C AND LOPASS

TABLE VIII
IMPULSE C SYNTHESIS RESULTS

TABLE IX
LOPASS SYNTHESIS RESULTS

Table IX shows the results of LOPASS, which uses the same
clock cycles as those in Table VIII to have a fair comparison.

The synthesis results from Impulse C and LOPASS are eval-
uated using Quartus II, a commercial FPGA design environ-
ment from Altera. A 536-I/O Cyclone III FPGA device, namely,
EP3C40F780C6, is chosen as the target device because it pro-
vides abundant LEs, I/Os, and 252 hardwired 9-b multipliers.
Aggressive timing requirements are set to exert high-effort de-
sign in Quartus II. For each benchmark, we took the RTL out-
puts, including both data path and controller, of Impulse C and
LOPASS and ran through synthesis, clustering, placement, and
routing to fit into the FPGA chip. Then, we used the power es-
timator available in Quartus II for power estimation. Table X
is the summary of the comparison results. Impulse C’s solution
does not generate MUXes, so it offers a better critical path delay
compared to LOPASS’ results. However, with an 11.8% penalty
on clock period, LOPASS can accomplish the same task with
far less resources. On average, LOPASS saves 9-b multipliers
by 77.1% and LEs by 27.9%. The savings on power are also

significant: 44.1% and 31.1% for dynamic and total powers, re-
spectively. Note that, for Impulse C, only the HW portion is used
to do the comparison.

Overall, in Section VI, we have demonstrated that LOPASS
provides a significant amount of improvement for FPGA
designs during high-level synthesis to optimize area, power,
and latency. We believe that the following features lead to the
promising results of LOPASS: 1) accurate FPGA architecture
and CAD design flow modeling; 2) well-designed optimiza-
tion engine with FPGA interconnect and steering logic power
estimation; and 3) effective interconnect optimization through
multiplexer reduction.

VII. CONCLUSION AND FUTURE WORK

We have presented a low-power architectural synthesis
system, i.e., LOPASS, for FPGA designs with interconnect
power estimation and optimization. It includes three major
components: 1) a flexible FPGA high-level power estimator
considering interconnect power; 2) a simulated-annealing-based
optimization engine; and 3) a postprocessing -cofamily-based
register binding algorithm and an efficient port assignment
algorithm for multiplexer optimization. Overall, LOPASS is
61.6% better on power consumption and 10.6% better on clock
period compared to that of an early commercial high-level
synthesis tool Synopsys Behavioral Compiler. Compared to a
current commercial C-to-FPGA tool, i.e., Impulse C, LOPASS
is 31.1% better on power consumption with an 11.8% penalty
on clock period. In the future, detailed high-level glitch power
modeling will be explored. FPGA architecture evaluation using
LOPASS will also be explored.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Engle-
wood Cliffs, NJ: Prentice-Hall, 1993, sec. 10.2.

[2] “Stratix Device Handbook” Altera Corporation, San Jose, CA [On-
line]. Available: http://www.altera.com/literature/hb/stx/stratix_hand-
book.pdf

[3] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA: Kluwer, 1999.

[4] A. Bogliolo, L. Benini, B. Riccó, and G. De Micheli, “Efficient
switching activity computation during high-level synthesis of con-
trol-dominated designs,” in Proc. Int. Symp. Low Power Electron.
Des., Aug. 1999, pp. 127–132.

[5] D. Chen and J. Cong, “Register binding and port assignment for mul-
tiplexer optimization,” in Proc. Asia South Pacific Des. Autom. Conf.,
Jan. 2004, pp. 68–73.

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[6] D. Chen, J. Cong, and Y. Fan, “Low-power high-level synthesis for
FPGA architectures,” in Proc. Int. Symp. Low Power Electron. Des.,
Aug. 2003, pp. 134–139.

[7] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-level power estima-
tion and low-power design space exploration for FPGAs,” in Proc. Asia
South Pacific Des. Autom. Conf., Jan. 2007, pp. 529–534.

[8] J. Cong and C. L. Liu, “On the �-layer planar subset and topological via
minimization problems,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 10, no. 8, pp. 972–981, Aug. 1991.

[9] J. A. Davis, V. K. De, and J. Meindl, “A stochastic wire-length distribu-
tion for gigascale integration (GSI)—Part I: Derivation and validation,”
IEEE Trans. Electron Devices, vol. 45, no. 3, pp. 580–589, Mar. 1998.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[11] S. Devadas and A. R. Newton, “Algorithms for hardware allocation in
datapath synthesis,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 8, no. 7, pp. 768–781, Jul. 1989.

[12] R. P. Dilworth, “A decomposition theorem for partially ordered set,”
Ann. Math, vol. 51, pp. 161–166, 1950.

[13] W. E. Donath, “Placement and average interconnection lengths of
computer logic,” IEEE Trans. Circuits Syst., vol. CAS-26, no. 4, pp.
272–277, Apr. 1979.

[14] A. A. Duncan, D. C. Hendry, and P. Gray, “An overview of the
COBRA-ABS high level synthesis system for multi-FPGA systems,”
in Proc. Symp. FPGAs Custom Comput. Mach., 1998, pp. 106–115.

[15] M. Feuer, “Connectivity of random logic,” IEEE Trans. Comput., vol.
C-31, no. 1, pp. 29–33, Jan. 1982.

[16] C. Greene and D. Kleitman, “The structure of Sperner k-family,” J.
Comb. Theory, Ser. A, vol. 20, pp. 41–68, 1976.

[17] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, SPARK: A Parallelizing
Approach to the High-Level Synthesis of Digital Circuits. Norwell,
MA: Kluwer, 2004.

[18] C. Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu, “Data path allo-
cation based on bipartite weighted matching,” in Des. Autom. Conf.,
1990, pp. 499–504.

[19] Impulse Accelerated Technologies, Kirkland, WA, “Impulse C,” [On-
line]. Available: http://www.impulsec.com/

[20] P. Kollig and B. M. Al-Hashimi, “Simultaneous scheduling, allocation
and binding in high level synthesis,” Electron. Lett., vol. 33, no. 18, pp.
1516–1518, Aug. 1997.

[21] E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,” in
Proc. Int. Symp. Low Power Electron. Des., Aug. 1998, pp. 155–160.

[22] B. Landman and R. Russo, “On a pin versus block relationship for par-
titions of logic graphs,” IEEE Trans. Comput., vol. C-20, no. 12, pp.
1469–1479, Dec. 1971.

[23] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for
power-efficient FPGAs,” in Proc. ACM Int. Symp. FPGA, Feb. 2003,
pp. 175–184.

[24] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power modeling and char-
acteristics of field programmable gate arrays,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 24, no. 11, pp. 1712–1724,
Nov. 2005.

[25] C. L. Liu, Elements of Discrete Mathematics. New York: McGraw-
Hill, 1977.

[26] B. Pangrle, “On the complexity of connectivity binding,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 11, pp.
1460–1465, Nov. 1991.

[27] M. Pedram, “Low power design methodologies and techniques: An
overview,” Mar. 1999. [Online]. Available: http://atrak.usc.edu/~mas-
soud

[28] L. Shang, A. Kaviani, and K. Bathala, “Dynamic power consumption
in Virtex-II FPGA family,” in Proc. Int. Symp. Field-Program. Gate
Arrays, Feb. 2002, pp. 157–164.

[29] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering for area
and power reduction in FPGAs,” in Proc. ACM Int. Symp. FPGA, Feb.
2002, pp. 59–66.

[30] M. B. Srivastava and M. Potkonjak, “Optimum and heuristic trans-
formation techniques for simultaneous optimization of latency and
throughput,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3,
no. 1, pp. 2–19, Mar. 1995.

[31] D. Stroobandt and J. V. Campenhout, “Accurate interconnection length
estimations for predictions early in the design cycle,” VLSI Des.—Spe-
cial Issue Phys. Des. Deep Submicron, vol. 10, no. 1, pp. 1–20, 1999.

[32] Synopsys, San Jose, CA, “Synopsys,” [Online]. Available: http://www.
synopsys.com/products/products_matrix.html

[33] M. Vasilko and D. Ait-Boudaoud, “Scheduling for dynamically recon-
figurable FPGAs,” in Proc. Int. Workshop Logic Architecture Synthesis,
1995, pp. 328–336.

[34] F. G. Wolff, M. J. Knieser, D. J. Weyer, and C. A. Papachristou,
“High-level low power FPGA design methodology,” in Proc. IEEE
Nat. Aerosp. Conf., 2000, pp. 554–559.

[35] M. Xu and F. J. Kurdahi, “Layout-driven high level synthesis for FPGA
based architectures,” in Proc. IEEE Symp. FPGAs Custom Comput.
Mach., 1998, pp. 446–450.

Deming Chen (S’01–M’05) received the B.S. degree in computer science from
University of Pittsburgh, PA, in 1995, and the M.S. and Ph.D. degrees in com-
puter science from University of California at Los Angeles, in 2001 and 2005,
respectively.

He is a technical committee member for a series of conferences and sym-
posia. His current research interests include nano-systems design and nano-cen-
tric CAD techniques, FPGA synthesis and physical design, high-level synthesis,
microprocessor architecture design under process/parameter variation, and re-
configurable computing. He is a TPC subcommittee chair for ASPDAC’09-10
and a CAD Track co-chair for ISVLSI’09.

Dr. Chen was a recipient of the Achievement Award for Excellent Teamwork
from Aplus Design Technologies in 2001, the Arnold O. Beckman Research
Award from UIUC in 2007, the NSF CAREER Award in 2008, and the ASPDAC
Best Paper Award in 2009. He is included in the List of Teachers Ranked as
Excellent in 2008. He is an Associated Editor for the IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

Jason Cong (S’88–M’90–SM’96–F’00) received the B.S. degree in computer
science from Peking University, Peking, China, in 1985, the M.S. and Ph.D. de-
grees in computer science from the University of Illinois at Urbana-Champaign,
in 1987 and 1990, respectively.

Currently, he is a Chancellor’s Professor at the Computer Science Depart-
ment of University of California, Los Angeles, and a co-director of the VLSI
CAD Laboratory. He also served as the department chair from 2005 to 2008.
His research interests include computer-aided design of VLSI circuits and sys-
tems, design and synthesis of system-on-a-chip, programmable systems, novel
computer architectures, nano-systems, and highly scalable algorithms.

Dr. Cong was a recipient of a number of awards and recognitions, including
the Ross J. Martin Award for Excellence in Research from the University of
Illinois at Urbana-Champaign in 1989, the NSF Young Investigator Award in
1993, the Northrop Outstanding Junior Faculty Research Award from UCLA
in 1993, the ACM/SIGDA Meritorious Service Award in 1998, and the SRC
Technical Excellence Award in 2000. He also received four Best Paper Awards.
He was elected to an IEEE Fellow in 2000 and ACM Fellow in 2008.

Yiping Fan (S’02–M’06) received the B.S. degree in electrical engineering and
the M.S. degree in computer science from Tsinghua University, Beijing, China,
in 1998 and 2001, respectively, and the Ph.D. degree in computer science from
University of California, Los Angeles, in 2006.

Currently, he is a cofounder and director of engineering in synthesis infra-
structure of AutoESL Design Technologies, Inc. He has published over 20 pub-
lications in the research area of electronic design automation.

Lu Wan (S’08) received the B.S. degree in electrical engineering and the M.S.
degree in computer science and engineering from Jiaotong University, Shanghai,
China, in 2001 and 2004, respectively. He is currently pursuing the Ph.D. degree
in the Electrical and Computer Engineering Department, University of Illinois,
Urbana-Champaign.

He was with IBM China Research Lab as a R&D Engineer from 2004 to
2006. His research interests include VLSI design for application acceleration,
reconfigurable computing, and CAD techniques for logic synthesis and physical
design.

Authorized licensed use limited to: University of Illinois. Downloaded on August 25, 2009 at 15:15 from IEEE Xplore. Restrictions apply.

