
Multilevel Granularity Parallelism Synthesis on FPGAs

Alexandros Papakonstantinou1, Yun Liang2, John A. Stratton1, Karthik Gururaj3,
Deming Chen1, Wen-Mei W. Hwu1, Jason Cong3

1Electrical & Computer Eng. Dept., University of Illinois, Urbana-Champaign, IL, USA
2Advanced Digital Science Center, Illinois at Singapore, Singapore

3Computer Science Dept., University of California, Los-Angeles, CA, USA.
1{apapako2,stratton,dchen,w-hwu}@illinois.edu, 2{eric.liang}@adsc.com.sg, 3{karthikg,cong}@cs.ucla.edu

Abstract— Recent progress in High-Level Synthesis (HLS)
techniques has helped raise the abstraction level of FPGA
programming. However implementation and performance
evaluation of the HLS-generated RTL, involves lengthy logic
synthesis and physical design flows. Moreover, mapping of
different levels of coarse grained parallelism onto hardware
spatial parallelism affects the final FPGA-based performance
both in terms of cycles and frequency. Evaluation of the rich
design space through the full implementation flow - starting
with high level source code and ending with routed netlist - is
prohibitive in various scientific and computing domains, thus
hindering the adoption of reconfigurable computing. This
work presents a framework for multilevel granularity
parallelism exploration with HLS-order of efficiency. Our
framework considers different granularities of parallelism for
mapping CUDA kernels onto high performance FPGA-based
accelerators. We leverage resource and clock period models to
estimate the impact of multi-granularity parallelism extraction
on execution cycles and frequency. The proposed Multilevel
Granularity Parallelism Synthesis (ML-GPS) framework
employs an efficient design space search heuristic in tandem
with the estimation models as well as design layout information
to derive a performance near-optimal configuration. Our
experimental results demonstrate that ML-GPS can efficiently
identify and generate CUDA kernel configurations that can
significantly outperform previous related tools whereas it can
offer competitive performance compared to software kernel
execution on GPUs at a fraction of the energy cost.

Keywords-FPGA; High-Level Sytnthesis; Parallel Compu-
ting; Design Space Exploration

I. INTRODUCTION
Field Programmable Gate Array (FPGA) devices have

been receiving increased attention and gaining growing
market during the past two decades. Some of their key
advantages include re-programmability (compared to
ASICs), low power (compared to multicores and GPUs),
long-term reliability (i.e. higher MTBF due to low
temperature operation), real-time execution characteristics
(i.e. do not depend on operating systems, caches or other
non-deterministic latency sources) and high spatial
parallelism that can be tailored to each application.
Nevertheless, they suffer from usability challenges which
consist of i) complex programming models (i.e. low level
hardware description languages, e.g. VHDL, Verilog) and ii)
complex and high-latency synthesis flows. As a
consequence, few beyond hardware design experts adopt
FPGA programming in practice.

Ongoing developments in the field of high-level
synthesis (HLS) have led to the emergence of several
industry [1-3] and academia powered [4,5] tools that can
generate device-specific RTL descriptions from popular
High-Level programming Languages (HLLs). Such tools
help raise the abstraction of the programming model and
constitute a significant improvement in FPGAs’ usability.
However, the sequential semantics of traditional
programming languages greatly inhibit HLS tools from
extracting parallelism at coarser granularities than instruction
level parallelism (ILP). Even though parallelizing
optimizations such as loop unrolling may help extract
coarser-granularity parallelism at the loop level [6,7], the
rich spatial hardware parallelism of FPGAs may not be
optimally utilized, resulting in suboptimal performance.

Recent trends of CPU and GPU designs toward coarser
grained parallel architectures (e.g. MultiCores and
ManyCores) have led to a growing general usage of several
new programming models [8-11] that explicitly expose
coarse-grained parallelism. Some of these programming
models, such as OpenMP, streaming languages, etc., have
been adopted as programming interfaces for mapping
application parallelism onto FPGA [12-14]. Moreover, the
recently introduced CUDA (Compute Unified Device
Architecture) [8] programming model by NVIDIA which
provides a multi-threaded SPMD model for general purpose
computing on GPUs has been selected as the FPGA
programming model in the FCUDA framework [15].

All of these HLS works take advantage of the abundant
spatial parallelism in FPGAs to exploit the inherent
application parallelism. However, in most cases, application
parallelism is extracted only from a single level of
granularity (e.g. loop [13,6,7], stream pipeline [14] or
procedure granularity [15]). Moreover, the impact of
additional parallelism on frequency is either ignored (only
cycles are reported) or dealt with via worst case synthesis
conditions (i.e. target very low frequency). Exposing more
parallelism will improve the number of execution cycles but
may severely affect (more than 10X) the clock period due to
wire routing and fan-out side effects. Thus, neglecting
frequency may lead to a worse design in terms of both
performance and area.

In this paper, we propose a Multilevel Granularity
Parallelism Synthesis (ML-GPS) HLS-based framework for
mapping CUDA kernels onto FPGAs. We leverage
parallelism extraction at four different granularity levels: i)
array ii) thread, iii) core and iv) core-cluster. By tuning
parallelism extraction across different granularities, our goal

is to find a good balance between execution cycles and
frequency. ML-GPS is based on existing HLS tools and
provides an automated framework for i) considering the
effect of multilevel parallelism extraction on both execution
cycles and frequency and ii) leveraging HLL code
transformations (such as unroll-and-jam, procedure call
replication and array partitioning) to guide the HLS tools in
multilevel granularity parallelism synthesis.

Exploration of several configurations in the hardware
design space is often restricted by the slow synthesis and
place-&-route (P&R) processes. HLS tools have been used
for evaluating different design points in previous work [6,7].
Execution cycles and area estimates from HLS were
acquired without going through logic synthesis of the RTL.
Array partitioning was exploited together with loop unrolling
to improve compute parallelism and eliminate array access
bottlenecks. Given an unroll factor, all the non dependent
array accesses were partitioned. Such an aggressive
partitioning strategy may severely impact the clock period,
though (i.e. array partitioning results in extra address/data
busses, address decoding and routing logic for on-chip
memories). In this work, we identify the best array partition
degree considering both kernel and device characteristics
through resource and clock period estimation models.

Various resource/frequency estimation models have been
proposed [16-18], but not in conjunction with multi-
granularity parallelism extraction. In this work, we propose
resource and clock period estimation models that predict the
resource and clock period as a function of the degrees of
different parallelism granularities (array, thread, core and
core-cluster). Additionally we incorporate physical layout
information into the framework by partitioning the design
into physical layout tiles on the FPGA (each core-cluster is
placed in one physical tile). Our clock period estimation
model takes into account the design resource usage and
layout on the FPGA and predicts the clock period
degradation due to wire routing. We combine our resource
and period models with HLS tool execution cycle
estimations to eliminate the lengthy synthesis and P&R runs
during design space exploration. To explore the multi-
dimensional design space efficiently, we propose a heuristic
which leverages our estimation models along with a binary
search algorithm to prune the design space and minimize the
number of HLS invocations. Thus the ML-GPS framework
can efficiently complete the design space exploration within
minutes (rather than days if synthesis and physical
implementation were used). More importantly, the design
space point selected by the ML-GPS search is shown to
provide up to 7X of speedup with relation to previous work
[15], while achieving near optimal performance.

The main contributions in this paper are as follows:
• We describe an automated multilevel granularity

parallelism synthesis framework for mapping CUDA
kernels onto FPGAs.

• We derive accurate resource and clock period estimation
models.

• We propose a design space exploration algorithm for
fast and near-optimal multi-granularity parallelism
synthesis.

II. BACKGROUND AND MOTIVATION
The ML-GPS framework is based on the FCUDA

framework [15] (referred to as SL-GPS hereafter) which
demonstrates a novel HLS-based flow for mapping coarse-
grained parallelism in CUDA kernels onto spatial parallelism
on reconfigurable fabric. The SPMD CUDA kernels offer a
concise way for describing work to be done by multiple
threads which are organized in groups called thread-blocks.
Each thread-block is executed on a GPU streaming
multiprocessor (SM) which comprises of several streaming
processors (SP) that execute the individual threads. SL-GPS
converts the CUDA kernel threads into thread-loops which
describe the work of CUDA thread-blocks. Each thread-loop
is then converted into a custom hardware processing engine
referred to as core, hereafter. Each core executes the
iterations (aka threads) within its corresponding thread-loop
in a sequential fashion and multiple cores are instantiated on
the FPGA. Thus, coarse grained parallelism is extracted only
at the granularity of thread-loops (i.e. CUDA thread-blocks).
CUDA thread-blocks have properties that enable efficient
extraction of application parallelism onto spatial parallelism.
First, they execute independently and only synchronize
through off-chip memory across kernel invocations. In SL-
GPS this translates to multiple instantiated cores that can
execute in parallel without long inter-core communication
signals. Second, according to the CUDA programming
model, each thread-block is assigned to one GPU SM with a
private set of on-chip memories and registers. In SL-GPS
this is leveraged by allocating private on-chip BRAMs and
registers to each core, thus, eliminating memory access
bottlenecks from shared memories and high fan-out loads
from shared registers.

However, exposing parallelism at a single level of
granularity may result in loss of optimization opportunities
that may be inherent in different types and granularities of
parallelism. Finer granularities offer parallelism in a more
light-weight fashion by incorporating less resource
replication at the expense of extra communication. On the
other hand, coarser granularities eliminate part of the
communication by introducing more redundancy. ML-GPS
provides a framework for flexible parallelism synthesis of
different granularities. In addition to the core granularity, the
proposed framework considers the granularities of thread,
array and core-cluster. As mentioned earlier, cores
correspond to CUDA thread-blocks and in ML-GPS each
core is represented by a procedure (which contains the
thread-loop). Concurrent procedure calls are utilized to guide
the instantiation of parallel cores by the HLS tool. Threads
correspond to thread-loop iterations and are parallelized by
unrolling the thread-loops. Array access optimization is
facilitated by array partitioning (only for arrays residing in
on-chip memories). Finally, core-clusters correspond to
groups of cores that share a common data communication
interface (DCI) and placement constraints. The placement
constraints associated with each core-cluster enforce physical
proximity and short interconnection wires between the intra-
cluster modules. As shown in Fig. 1, the placement of each
cluster is constrained within one physical tile.

Both core- and thread-level parallelism extractions
contribute to compute logic replication. However threads are
more resource efficient (compared to cores) as they allow
more sharing opportunities for memories, registers and other
resource (Fig. 1). The downside of thread-level parallelism is
longer and higher fan-out wires between shared resources
and private logic of each thread as the degree of unroll
increases. Cores on the other hand require fewer
communication paths (only share DCI) at the expense of
higher logic replication (Fig. 1). At an even finer granularity,
array access parallelism is extracted through array
partitioning and it enables more memory accesses per clock
cycle, though at the expense of BRAM resources (each
partition requires exclusive use of the allocated BRAMs) and
addressing logic.

The DCI module includes the logic that carries out the
data transfers to/from the off-chip memories through the
DRAM controllers. Sharing a single DCI module among all
the cores on the FPGA may result in long interconnection
wires that severely affect frequency, annulling the benefit of
core-level parallelism. As a downside, DCI units consume
device resources while providing no execution cycle
benefits. Core clustering helps eliminate long

interconnection wires by constraining the cluster logic
placement within physical tiles. Moreover, pipelining is used
at the inter-cluster interconnection level (Fig. 1) to connect
the DCI modules with the DRAM controller.

The optimal mix of parallelism extraction at different
granularity levels depends on the application kernel
characteristics as well as the resource characteristics of the
FPGA device. Depending on the application, different
granularity levels will affect execution cycles, clock
frequency and resource usage in different degrees. Moreover,
the absolute and relative capacities of different resource
types in the targeted device will determine which granularity
of parallelism is more beneficial.

Fig. 2 depicts a 2D plot of the design space for the mm
kernel in terms of compute latency vs. resource (slices)
usage. Each point represents a different configuration (i.e.
combination of threads, cores, core-clusters and array
partition degree). We observe that performance is highly
sensitive to the parallelism extraction configurations. The
depicted design space includes about 300 configurations and
their evaluation through logic synthesis and P&R took over 7
days to complete. The charts in Fig. 3 offer a more detailed
view of a small subset of design points in terms of cycles,
clock frequency total thread count and latency, respectively.
All of the configurations of the depicted subset have high
resource utilization (greater than 75% of device slices) and
span a wide range of the design space. The leftmost bar (C0)
corresponds to the SL-GPS configuration which leverages
only core-level parallelism, whereas the other configurations
exploit parallelism in multiple dimensions. In each graph the
highlighted bar corresponds to the best configuration with
respect to the corresponding metric. As we can observe, C8
is the configuration with minimum latency, whereas different
configurations are optimal in different performance related
metrics (i.e. cycles, frequency and thread count). The charts
demonstrate that i) single granularity parallelism extraction
does not offer optimal performance and ii) performance
constituents are impacted differently by different parallelism
granularities.

III. ML-GPS FRAMEWORK OVERVIEW
Before we introduce the ML-GPS framework, we first

describe the corresponding source code transformations
leveraged for the different parallelism granularities we
consider.

Figure 1. Thread, Core, Core-Cluster and Memory BW granularities

Figure 2. Design space of mm kernel

10

100

1000

1200 3200 5200 7200

La
te

nc
y

Slices

 a) Execution cycles b) Clock Frequency c) Hardware concurrency d) Execution Latency

Figure 3. Performance attributes of mm design space configurations

0
1
2
3
4
5
6

C0 C2 C4 C6 C8 C10

C
yc

le
s

(m
ill

io
n)

0

50

100

150

200

250

C0 C2 C4 C6 C8 C10

Fr
eq

ue
nc

y
(M

H
z)

0

20

40

60

80

100

C0 C2 C4 C6 C8 C10

Th
re

ad
 C

ou
nt

0
10
20
30
40
50
60

C0 C2 C4 C6 C8 C10

La
te

nc
y

(u
s) SL-GPS

Threads: unfolding of thread-loop iterations through
unroll-and-jam transformations (Fig 4b).

Array: on-chip array access concurrency is controlled by
the degree of array partitioning, which divides arrays to
separate partitions (Fig. 4c). Each partition is mapped onto a
separate BRAM and thus, the array acquires multiple
memory ports. In this work, array partitioning is applied only
to arrays with affine accesses [19].

Cores: unfolding of threadblock-loop iterations through
replication of thread-loop function calls (Fig. 4d). Each
function call corresponds to the instantiation of one parallel
core.

Core-cluster: the set of thread-blocks is partitioned to
subsets, with each subset assigned to one core-cluster.

The ML-GPS framework leverages three main engines as
depicted in Fig. 5a: i) a source-to-source transformation
(SST) engine ii) a design space exploration (DSE) engine
and iii) a HLS engine. The SST engine takes as input the
CUDA code along with a set of configuration parameters
that correspond to the degrees of the different parallelism
granularities to be exposed in the output code. The
configuration parameters are generated by the DSE engine
which takes as input the target FPGA device data and
determines the configurations that should be evaluated
during the design space exploration. Finally, the HLS engine
synthesizes the generated output code of the SST engine to
RTL. In the ML-GPS framework we use a commercial HLS
tool [2], which generates highly-optimized RTL code.

The ML-GPS flow involves three automated main steps
(Fig. 5b). Initially a kernel profiling step is performed in
order to build the resource estimation model for each kernel.
Profiling entails feeding the SST engine with a small set of
multilevel granularity configurations which are subsequently
synthesized by the HLS tool to generate the corresponding
resource utilization estimations. A kernel-specific resource
model is then built using regression analysis on the HLS
resource estimations. The number of the profiled

configuration points determines the accuracy of the resource
estimation model generated. More configurations result in
more accurate resource models, though, at the expense of
extra profiling time. In the ML-GPS framework the user can
determine the effort spent on profiling.

After profiling, the design space is determined in the
second main step. First the total number of core-cluster
configurations is determined by considering both the
resource estimation model generated in the 1st step (i.e. take
into account the kernel characteristics) and the selected
FPGA device (i.e. take into account the resource availability
and distribution on the device). Subsequently the thread,
array partitioning and core dimensions of the design space
are determined for each core-cluster configuration with the
help of the resource estimation model.

Finally in the third main step, design space exploration is
performed using the resource and the clock period estimation
models along with cycle estimates from the HLS tool to
evaluate the performance of the different design points. A
binary search heuristic is used to trim down the number of
HLS invocations and prune the design space. The DSE
engine’s goal is to identify the optimal coordinates in the
multi-dimensional parallelism granularity space in order to
maximize the performance of the CUDA kernel on the
selected FPGA device (i.e. given a fixed resource budget).

IV. DESIGN SPACE EXPLORATION
As mentioned previously, exploration of the multilevel

granularity space is based on estimations of resource, clock
period and cycles. We estimate resource and clock period
degradation due to routing through regression analysis based
equations, whereas we leverage cycle estimations from HLS.
The formulas used for resource and clock period estimations
are presented in the following section. To optimize the space
exploration runtime we employ an efficient search
optimization that helps minimize the number of HLS tool
invocations during the search process. This is discussed in
Section IV.B.

A. Resource and Clock Period Estimation Models
The resource model is built during the profiling step of

the flow. A small number of points in the design space are
used to generate different configurations of the input kernel
exposing different granularities of parallelism. The HLS tool
is fed with the profiled kernel configurations and it returns
resource estimation results. We classify the resource
estimations based on the degrees of parallelism exposed at
the core (CR), thread (TH), and array-partitioning (AP)
dimensions. Using linear regression we then evaluate the R0,
R1, R2 R3 and R4 coefficients of (1):

matmul_tblock(…) {
 for(ty=0; ty<bDim.y; ty++)
 for(tx=0; tx<bDim.x; tx++) {
 for (k=0; k<BLK_SIZE; ++k)
 Cs[ty][tx] += As[ty][k] * Bs[k][tx];
 }
}

matmul_tblock(…) {
 for(ty=0; ty<bDim.y/2; ty++)
 for(tx=0; tx<bDim.x; tx++) {
 for (k=0; k<BLK_SIZE; ++k)
 Cs[ty][tx] += As[ty][k] * Bs[k][tx];
 Cs[ty+bDim.y/2][tx] +=
 As[ty+bDim.y/2][k] *Bs[k][tx];
 } }

matmul_tblock(…) {
 for(ty=0; ty<bDim.y/2; ty++)
 for(tx=0; tx<bDim.x; tx++) {
 for (k=0; k<BLK_SIZE; ++k)
 Cs1[ty][tx] += As1[ty][k] * Bs[k][tx];
 Cs2[ty][tx] += As2[ty][k] * Bs[k][tx];
 }
}

for(by=0; by<gDim.y/2; by++)
 for(bx=0; bx<gDim.x; bx++) {
 matmul(…)
 matmul(…)
 }

 a) Original mm code b) Unrolled thread-loop c) Arrays A and C partitioned d) Thread-block concurrency

Figure 4. Source code transformations (mm kernel)

 a) ML-GPS components b) ML-GPS flow

 Figure 5. ML-GPS Overview

 ܴ ൌ ܴ଴ ൅ ܴଵ ൈ ܴܥ ൅ ܴଶ ൈ ܴܥ ൈ ܪܶ ൅
 ܴଷ ൈ ܴܥ ൈ ܲܣ ൅ ܴସ ൈ ܪܶ ൈ ሺ1ሻ ܲܣ

Conceptually, the model characterizes the resource usage
of a core-cluster based on the core number (R1), count of
threads (R2), array partitioning (R3), and the interaction
between unrolling and array partitioning (R4). For each type
of resource (LUT, Flip-Flop, BRAM and DSP) we construct
a separate equation which represents the core-cluster
resource usage as a function of the different parallelism
granularities. These equations are kernel-specific and are
used during the design space exploration phase for resource
budgeting as well as for estimating the clock period. The
total resource count, RFPGA, is equal to the product of the
core-cluster resource estimation, R, and the number of
physical tiles, CL, (i.e. number of core-clusters): RFPGA=R ×
CL.

The clock period model aims to capture the clock period
degradation resulting from wire routing within the core-
cluster. The HLS-generated RTL is pipelined for a nominal
clock period defined by the user. However the actual clock
period of the placed netlist is often degraded (i.e. lengthened)
due to interconnection wire delays introduced during P&R.
Through this model we incorporate the effect of different
parallelism granularities as well as layout information on
interconnection wires (i.e. wires within the core cluster;
inter-cluster wires are pipelined appropriately, as mentioned
earlier) and thus the clock period. The period estimation
model is described by (2) which is pre-fitted offline using
synthesis data (synthesized CUDA kernels were used for the
period estimation model construction):

݀݋݅ݎ݁ܲ ൌ ଴ܲ ൅ ଵܲ ൈ ݃ܽ݅ܦ ൅ ଶܲ ൈ ݈݅ݐܷ ൅
ଷܲ ൈ ܲܣ ൅ ସܲ ൈ ሺ2ሻ ܪܶ

Diag is calculated using (3) and it corresponds to the
diagonal length (in slices) of a virtual tile with the following
properties: i) the total core-cluster slices can fit in the virtual
tile, ii) the dimensions of the virtual tile do not exceed the
dimensions of the allocated physical tile and iii) the diagonal
length of the virtual tile is minimal given the two previous
constraints. Util in (2) represents the slice utilization rate of
the physical tile by the core-cluster logic.

ଶ݃ܽ݅ܦ ൌ ቐ
2 ൈ ܴ௦௟௜௖௘ , ݂݅ ܴ௦௟௜௖௘ ൑ ଶ݉݅ܦ݊݅݉

ଶ݉݅ܦ݊݅݉ ൅ ൬
ܴ௦௟௜௖௘

൰݉݅ܦ݊݅݉
ଶ
, ݂݅ ܴ௦௟௜௖௘ ൐ ଶ݉݅ܦ݊݅݉

 ሺ3ሻ

where minDim corresponds to the minimum dimension
of the physical tile (in slices) and Rslice is the slice count of
the core-cluster logic. Parameters Rslice (hence Diag) and Util
in (2) are calculated by leveraging the resource model
described above. Conceptually, parameter Diag incorporates
the core-cluster resource area and layout information while
Util incorporates the routing flexibility into the period
model. AP and TH represent the requirement for extra wire
connectivity within each core due to array partitioning and
thread-loop unrolling.

B. Design Space Search Algorithm
1) Latency Estimation

Following the resource model construction for each
kernel, the multi-dimensional design space can be bound
given a resource constraint, i.e. an FPGA device target. Our

goal is to identify the configuration with the minimum
latency, Lat, within the bound design space. Latency is a
function of all the parallelism granularity dimensions (i.e.
thread (TH), array partitioning (AP), core (CR) and core-
cluster (CL)) of the space we consider and is estimated using
(4):

,ܪሺܶݐܽܮ ,ܲܣ ,ܴܥ ሻܮܥ ൌ ܿݕܥ ൈ ௕ܰ௟௢௖௞

ܴܥ ൈ ܮܥ ൈ ݀݋݅ݎ݁ܲ
ሺ4ሻ

where Nblock represents the total number of kernel thread-
blocks, Cyc is the number of execution cycles required for
one thread-block and Period is the clock period. As was
discussed earlier, Period is affected by all the design space
dimensions and is estimated through our estimation model in
(2). On the other hand, Cyc is generated by the HLS engine
and is only affected by the TH and AP dimensions (i.e. the
HLS engine’s scheduling depends on the thread-loop
unrolling and array partitioning degrees). Thus for the design
subspace that corresponds to a pair of unroll (u) and array-
partitioning (m) degrees, Lat is minimized when the
expression in (5) is minimized. We leverage this observation
in tandem with our binary search heuristic to prune the
design space and cut down the HLS invocations.

,݉,ݑሺܧ ,ܴܥ ሻܮܥ ൌ ௕ܰ௟௢௖௞

ܴܥ ൈ ܮܥ ൈ ሺ5ሻ ݀݋݅ݎ݁ܲ

2) Binary Search Heuristic

The binary search heuristic is guided by the following
observation:

Observation 1: For a given loop unroll factor, latency
decreases monotonically first with a subsequent monotonic
increase as the array partition degree increases.

Fig. 6a depicts the fwt2 kernel latency for different unroll
and array-partition pairs (u, m). For each point in Fig. 6a, its
latency is determined by using the core (ܴܥ௨௠) and core-
cluster (௨௠ܮܥ) values that minimize E in (5), and thus
minimize Lat. We can observe (Fig. 6a) that the value of
execution latency as a function of array partition degree for a
fixed unroll factor decreases monotonically until a global
optimal point, after which it increases monotonically.
Intuitively, as the array partition degree increases, on-chip
array access bandwidth is improved as more array references

 a) Array partition degree

 b) Unroll Factor

 Figure 6. Unroll and Array partition effects on latency

0
1
2
3
4

1 2 4 8

La
te

nc
y

(m
s)

unroll-4 unroll-8 unroll-16

1
1.2
1.4
1.6
1.8

2

1 2 4 8 16

La
te

nc
y

(m
s)

1
1 2 4

4

can take place concurrently (i.e. execution cycles decrease).
However, after a certain degree (saturation point), any
further partitioning does not decrease clock cycles.
Additionally it hurts frequency due to increased wire
connectivity and higher logic complexity. More importantly,
further partitioning may constrain coarse granularity
extraction at the core and core-cluster levels as more
BRAMS are used by each core. Thus, there exists an optimal
array partition degree for each unroll factor. Observation 1
has been verified for other benchmarks as well.
 A similar trend has also been observed for unroll factor
(Fig. 6b). For each unroll factor u in Fig. 6b, its latency is
determined by using its optimal array partition degree m
from Fig. 6a and core (௨௠ܴܥ) and core-cluster (௨௠ܮܥ)
values. Intuitively, as the unroll factor increases, more
parallelism is exploited, thus improving the execution
latency. However, unrolling beyond a certain degree may not
be beneficial due to array access bottleneck and frequency
degradation (from increased connectivity and fan-out issues).
In summary, there is an optimal unrolling degree.
 Based on the above observation and the intuition behind
it, in Algorithm 1 we propose a binary search algorithm to
find the optimal point (unroll factor u and array partition
degree m). As shown in Algorithm 1, we search unroll factor
first followed by array partition degree. Array space[] stores
the feasible values for each dimension dim, in sorted order
(line 9). The size and value of space[] are obtained from the
resource model. Then, we perform binary search for
dimension dim. In each round of the binary search (line 11-
22), we compare the performance of two middle neighboring
points (mid, mid+1). Function Select records the value
selected for the dimension dim. The comparison result guides
the search towards one direction (the direction with smaller
latency) while the other direction is pruned away. In the end
of the search across each dimension, the best result of the
current dimension (in terms of execution latency) is returned.

For each point visited during the search (i.e. (u, m) pair), the
corresponding execution latency is computed based on (4)
(line 6). The function UpdateLatency compares the current
solution with the global best solution and updates it if the
current solution turns out to be better.
 Let us consider fwt2, shown in Fig 6, as an example. We
start searching the unroll degree dimension and compare two
neighboring points in the middle (2 and 4). For each unroll
factor (2 and 4), its minimal latency is returned by
recursively searching next dimension in a binary search
fashion. The best solution so far is stored and the latency
comparison of unroll factors (2 and 4) will indicate the
subsequent search direction. The complexity of our binary
search is log|U|×log|M|, where U and M represent the design
dimensions of thread and array partition.

V. EXPERIMENTAL RESULTS
The goals of our experimental study are threefold: i) to

evaluate the effectiveness of the estimation models and the
search algorithm employed in ML-GPS, ii) to measure the
performance advantage offered by considering multiple
parallelism granularities in ML-GPS versus SL-GPS [15]
and iii) to compare FPGA and GPU execution latency and
energy consumption.

The CUDA kernels used in our experimental evaluations
come from the CUDA SDK [8] and Parboil [20] suites and
are described in Table I. The 1st column of Table I lists the
application names and kernel aliases, the 2nd column details
the input/output data dimensions and the 3rd column gives a
short description of the application that corresponds to the
kernel. In the experiments detailed in the following sections,
we focus on integer computation performance and thus have
modified the original kernels to include only integer
arithmetic. Moreover, we explore the flexibility of the
reconfigurable logic by evaluating the effect of different
bitwidths on performance.

TABLE I. CUDA KERNELS

Application
(Kernel Name)

Data
Dimensions

Description

Matrix Multiply
(mm)

4096x4096
arrays

Computes multiplication of two
arrays (used in many

applications)
Fast Walsh Transform

(fwt1) 32MB Vector

Walsh-Hadamart transform is a
generalized Fourier

transformation used in various
engineering applications

Fast Walsh Transform
(fwt2)

Coulombic Potential
(cp)

512x512 grid,
40000 atoms

Computation of electrostatic
potential in a volume

containing charged atoms
Discreet Wavelet
Transform (dwt) 120K points 1D DWT for Haar Wavelet and

signals

A. ML-GPS Design Space Exploration
We have employed a mid-size Virtex 5 device (VSX50T)

to explore the exhaustive design space of parallelism
extraction in the multi-dimensional space we consider. Fig.
7a and 7c depict the entire design space for mm and fwt2
kernels. Both maps consist of around 200 design points that
have been evaluated by running the complete

Algorithm 1. Binary Search

1 /* search sequence: unroll followed by array partition */;
2 Search (1);

3 Search (dim)
4 if search all the dimensions then
5 Let (ݑ,݉) be unroll and array partition pair.
ݐ݈ܽ 6 ൌ ,݉,ݑሺݐܽܮ ,௨௠ܴܥ ;௨௠ሻܮܥ

7 UpdateLatency (݈ܽݑ ,ݐ, ݉);
8 return ݈ܽݐ;
9 Let space[] be the design space of dimension dim ;
10 low = 1; high = |Space| ;
11 while low <= high do
12 mid = (low + high) / 2;
13 Select(dim, mid);
14 res_mid = Search(dim + 1);
15 Select(dim, mid + 1);
16 res_midPlus = Search(dim + 1);
17 if res_mid < res_midPlus then
18 high = mid - 1; /* search left */
19 Update(cur_best, res_mid);
20 else
21 low = mid + 2; /* search right */
22 Update(cur_best, res_midPlus);
23 return cur_best

implementation flow: HLS followed by logic synthesis and
P&R. Each design point corresponds to a unique
configuration of thread, array, core and core-cluster
parameters. Fig. 7b and 7d portray a subset of design points
that are within 3X of the optimal configuration. The ‘X’
markers highlight the configuration point identified by the
design space exploration (DSE) engine of the ML-GPS
framework. Our experiments indicate that the configuration
selected by the proposed search framework is, on average,
within 10% of the optimal configuration’s latency.

As described earlier, the DSE engine employs resource
and clock period estimation models and invokes the HLS
engine to profile the kernel and acquire cycle estimations.
Thus, the design space exploration completes within several
minutes compared to running synthesis and P&R which may
require several days for multiple configurations.

B. ML-GPS versus SL-GPS
We compare the ML-GPS framework with SL-GPS [15]

where parallelism was exposed only across the core
dimension. Fig. 8 shows the normalized comparison data for
a set of kernels. For these experiments we targeted a mid-
size virtex5 FPGA device (VSX50T). The ML-GPS space
exploration framework was used to identify the best
configuration in the multi-granularity design space. Then the
identified configuration was compared with the
configuration that utilizes the maximum number of cores
(SL-GPS) given the device resource budget. The comparison
depicted in Fig. 8 is based on execution latencies derived
from actual logic and physical synthesis implementations.

For each kernel we have generated two integer versions
with different bitwidth arithmetic: 16-bit and 32-bit. Our
experimental results show that performance is improved by
up to 7X when multi-granularity levels of parallelism are
considered. Note that for the fwt1_16 kernel there is no
performance improvement. The reason for this is due to the

multiple access patterns (with different strides) applied on
the fwt1 kernel arrays. This renders static array partitioning
infeasible without dynamic multiplexing of each access to
the right array partition. As a result, array partitioning is not
considered for fwt1 (in both bitwidth versions), thus
impacting the performance contribution of unrolling (i.e.
parallelism is exposed mainly across the core and core-
cluster dimensions). The limited degrees of freedom in
parallelism extraction result in small performance
improvements for the 32-bit version and no performance
improvement for the 16-bit version of fwt1.

C. ML-GPS versus GPU
1) Performance

In this set of experiments we compare the performance of
the FPGA-based hardware configuration identified by ML-
GPS with the software execution on the GPU. For the GPU
performance evaluation we use the Nvidia 9800 GX2 card
which hosts two G92 devices, each with 128 stream
processors. We utilize a single G92 device in our
experimental setup. In terms of FPGA device we target one
of the largest Xilinx Virtex5 devices (VSX240T) which
includes a rich collection of embedded DSP (1056) and
BRAM (1032) macros. The FPGA and GPU devices have
been selected to ensure a fair comparison with regards to
process technology (65nm) and transistor count.

In these comparison results we include both the compute
latencies as well as the data transfer latencies to/from off-
chip memories. The G92 device offers 64GB/sec peak off-
chip bandwidth. For the FPGA device we evaluate three
different off-chip bandwidth capacities: 8, 16 and 64GB/sec.
Fig. 9a depicts the FPGA execution latencies for the ML-
GPS chosen configuration, normalized with regards to the
GPU latency. First, we can observe that the 16-bit kernels
perform better than the corresponding 32-bit kernel versions
on the FPGA (note that the GPU execution latencies are
based on the 32-bit kernel versions). This is due to smaller
data communication volumes (half-size values), as well as
higher compute concurrency (smaller compute units allow
higher concurrency). Second, off-chip bandwidth has a
significant effect on performance, especially for kernels with
high off-chip bandwidth data traffic (e.g. fwt2). With
equivalent off-chip bandwidths (i.e. 64GB/s), the FPGA is
faster than the GPU for half of the kernels.

2) Energy
Using the same FPGA and GPU devices as previously,

we evaluate energy consumptions. For the GPU device we

 a) mm design space b) mm design subspace c) fwt2 design space d) fwt2 design subspace

 Figure 7. Multi-granularity parallelism design spaces

0
50

100
150
200
250
300
350
400

2000 12000 22000

La
te

nc
y

LUTs

10

15

20

25

30

35

5000 15000 25000

0

5

10

15

20

25

2000 12000 22000 32000

La
te

nc
y

LUTs

0.6
1.1
1.6
2.1
2.6
3.1

9000 29000

Figure 8. Performance comparison: ML-GPS vs. SL-GPS

0
1
2
3
4
5
6
7

Pe
rf

or
m

an
ce

 (n
or

m
al

iz
ed

ov

er
 S

L-
G

PS
)

use the reported power consumption of 170W (i.e. 270W
system – 100W board). For the FPGA chip we use the Xilinx
Power Estimator tool. The comparison results are depicted in
Fig. 9b, normalized with regard to the GPU results. The
energy consumed by the FPGA execution is less than 16% of
the GPU energy consumption for all of the kernels. The 16-
bit kernels show significant energy savings compared to the
corresponding 32-bit versions due to fewer DSP and BRAM
macro resources utilized per operation and operand,
respectively.

VI. CONCLUSIONS
In this paper we present a novel framework, ML-GPS,

for automated extraction of multilevel granularity parallelism
from CUDA kernels to hardware spatial parallelism on the
FPGA. The ML-GPS framework addresses the usability
challenges of FPGAs. It combines the higher programming
abstraction offered by HLS with multilevel granularity
parallelism synthesis enabled by source code transformations
(SST engine) and a fast design space exploration (DSE)
engine. By leveraging efficient and accurate resource and
clock period estimation models the proposed framework
guides the design space exploration towards a configuration
that is customized for the target FPGA and delivers high
compute performance. Our experimental results show that
ML-GPS achieves up to 7X speedup compared to SL-GPS
[15]. In comparison with GPU, FPGA (ML-GPS) is shown
to have competitive performance at a much lower power
footprint. The current framework implementation leverages
the CUDA programming model (thread and thread-block)
and the AutoPilot HLS tool (procedure level parallelism
support). Other SPMD-based programming models (e.g.
OpenCL [9]) and alternative HLS tools could be easily
supported in the future.

ACKNOWLEDGMENT
This work is partially supported by the Gigascale

Systems Research Center (GSRC) and the Advanced Digital
Sciences Center (ADSC) under a grant from the Agency for
Science, Technology and Research of Singapore.

REFERENCES
[1] Mentor Graphics “Catapult C Synthesis”, 2010, http://www.mentor.

com/products/esl/high_level_synthesis/catapult_synthesis/

[2] Z. Zhang et al., “Autopilot: a platform-based ESL synthesis system,”
in High-Level Synthesis: from Algorithm to Digital Circuit, P.
Coussy and A. Morawiec, Eds. Netherlands: Springer, 2008.

[3] Impulse Accelerated Technologies, “Impulse CoDeveloper,” 2010,
www.impusec.com

[4] P. Diniz et al., “Automatic Mapping of C to FPGAs with the
DEFACTO Compilation and Synthesis System,” Microprocessors &
Microsystems, vol. 29(2-3), 2005, pp. 51-62.

[5] J. Cong et al , "Platform-Based Behavior-Level and System-Level
Synthesis," Proc. IEEE Int. SOC Conf., 2006.

[6] H. Ziegler and M. Hall. “Evaluating Heuristics in Automatically
Mapping Multi-Loop Applications to FPGAs,” Proc. ACM Int. Symp.
Field Programmable Gate Arrays (FPGA’05), 2005.

[7] B. So et al., “Using Estimate from Behavioral Synthesis Tools in
Compiler-Directed Design Space Exploration,” Proc. IEEE/ACM
Design Automation Conf. (DAC), 2003.

[8] NVIDIA, “CUDA Zone”, 2011, Accessed Mar 2011,
http://www.nvidia.com/object/cuda_home_new.html

[9] Khronos, “The OpenCL specification, version: 1.1,” http://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf, 2010.

[10] OpenMP, “OpenMP application program interface,”
http://www.openmp.org/mp-documents/spec30.pdf, 2008.

[11] INTEL, “Sophisticated library for vector parallelism – Inter Array
Building Blocks,” http://software.intel.com/en-us/articles/intel-array-
building-blocks/, 2010.

[12] D. Cabrera et al., “OpenMP Extensions for FPGA Accelerators,”
Proc. IEEE Int. Conf. Systems, Architecture, Modeling & Simulation
(SAMOS’09), 2009.

[13] Y.Y. Leow et al., “Generating Hardware from OpenMP Programs,”
Proc. IEEE Int. Conf. Field Programmable Technology (FPT), 2006.

[14] A. Hagiescu et al., “A Computing Origami: Folding Streams in
FPGAs,” Proc. IEEE/ACM Design Automation Conf. (DAC), 2009.

[15] A. Papakonstantinou et al., "FCUDA: Enabling Efficient Compilation
of CUDA Kernels onto FPGAs," Proc. IEEE Symp. Application
Specific Processors (SASP’09), 2009.

[16] D. Julkarni et al. “Fast Area Estimation to Support Compiler
Optimizations in FPGA-based Reconfigurable Systems,” IEEE Symp.
Field-Programmable Custom Computing Machines (FCCM), 2002.

[17] A. Nayak et al. “Accurate Area and Delay Estimators for FPGAs,”
Proc. IEEE Conf. Design & Testin Europe (DATE’02), 2002.

[18] S. Bilavarn et al. “Design Space Pruning Through Early Estimations
of Area/Delay Tradeoffs for FPGA Implementations,” Computer-
Aided Design of Integrated Circuits and Systems, Vol. 25(10), 2006.

[19] J.Cong et al., “Automatic Memory Partitioning and Scheduling for
Throughput and Power Optimization”, Proc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD’09), 2009.

[20] IMPACT Rresearch Group, “Parboil Benchmark Suite”,
http://impact.crhc.illinois.edu/parboil.php, Univ. of Illinois, 2010.

 a) Latency comparison b) Energy consumption comparison

Figure 9. FPGA vs. GPU latency and energy comparison

0

1

2

3

4

5

La
te

nc
y

(n
or

m
al

iz
ed

 o
ve

r
G

PU
)

GPU

FPGA(8GB/s)

FPGA (16GB/s)

FPGA (64GB/s)

0%
2%
4%
6%
8%

10%
12%
14%
16%

En
er

gy
 (n

or
m

al
iz

ed
 o

ve
r

G
PU

)

