
Multilevel Granularity Parallelism Synthesis on FPGAs 
 

Alexandros Papakonstantinou1, Yun Liang2, John A. Stratton1, Karthik Gururaj3, 
Deming Chen1, Wen-Mei W. Hwu1, Jason Cong3 

1Electrical & Computer Eng. Dept., University of Illinois, Urbana-Champaign, IL, USA 
2Advanced Digital Science Center, Illinois at Singapore, Singapore 

3Computer Science Dept., University of California, Los-Angeles, CA, USA. 
1{apapako2,stratton,dchen,w-hwu}@illinois.edu, 2{eric.liang}@adsc.com.sg, 3{karthikg,cong}@cs.ucla.edu  

Abstract— Recent progress in High-Level Synthesis (HLS) 
techniques has helped raise the abstraction level of FPGA 
programming. However implementation and performance 
evaluation of the HLS-generated RTL, involves lengthy logic 
synthesis and physical design flows. Moreover, mapping of 
different levels of coarse grained parallelism onto hardware 
spatial parallelism affects the final FPGA-based performance 
both in terms of cycles and frequency. Evaluation of the rich 
design space through the full implementation flow - starting 
with high level source code and ending with routed netlist - is 
prohibitive in various scientific and computing domains, thus 
hindering the adoption of reconfigurable computing. This 
work presents a framework for multilevel granularity 
parallelism exploration with HLS-order of efficiency. Our 
framework considers different granularities of parallelism for 
mapping CUDA kernels onto high performance FPGA-based 
accelerators. We leverage resource and clock period models to 
estimate the impact of multi-granularity parallelism extraction 
on execution cycles and frequency. The proposed Multilevel 
Granularity Parallelism Synthesis (ML-GPS) framework 
employs an efficient design space search heuristic in tandem 
with the estimation models as well as design layout information 
to derive a performance near-optimal configuration. Our 
experimental results demonstrate that ML-GPS can efficiently 
identify and generate CUDA kernel configurations that can 
significantly outperform previous related tools whereas it can 
offer competitive performance compared to software kernel 
execution on GPUs at a fraction of the energy cost.  

Keywords-FPGA; High-Level Sytnthesis; Parallel Compu-
ting; Design Space Exploration  

I.  INTRODUCTION 
Field Programmable Gate Array (FPGA) devices have 

been receiving increased attention and gaining growing 
market during the past two decades. Some of their key 
advantages include re-programmability (compared to 
ASICs), low power (compared to multicores and GPUs), 
long-term reliability (i.e. higher MTBF due to low 
temperature operation), real-time execution characteristics 
(i.e. do not depend on operating systems, caches or other 
non-deterministic latency sources) and high spatial 
parallelism that can be tailored to each application. 
Nevertheless, they suffer from usability challenges which 
consist of i) complex programming models (i.e. low level 
hardware description languages, e.g. VHDL, Verilog) and ii) 
complex and high-latency synthesis flows. As a 
consequence, few beyond hardware design experts adopt 
FPGA programming in practice.  

Ongoing developments in the field of high-level 
synthesis (HLS) have led to the emergence of several 
industry [1-3] and academia powered [4,5] tools that can 
generate device-specific RTL descriptions from popular 
High-Level programming Languages (HLLs). Such tools 
help raise the abstraction of the programming model and 
constitute a significant improvement in FPGAs’ usability. 
However, the sequential semantics of traditional 
programming languages greatly inhibit HLS tools from 
extracting parallelism at coarser granularities than instruction 
level parallelism (ILP). Even though parallelizing 
optimizations such as loop unrolling may help extract 
coarser-granularity parallelism at the loop level [6,7], the 
rich spatial hardware parallelism of FPGAs may not be 
optimally utilized, resulting in suboptimal performance.  

Recent trends of CPU and GPU designs toward coarser 
grained parallel architectures (e.g. MultiCores and 
ManyCores) have led to a growing general usage of several 
new programming models [8-11] that explicitly expose 
coarse-grained parallelism. Some of these programming 
models, such as OpenMP, streaming languages, etc., have 
been adopted as programming interfaces for mapping 
application parallelism onto FPGA [12-14]. Moreover, the 
recently introduced CUDA (Compute Unified Device 
Architecture) [8] programming model by NVIDIA which 
provides a multi-threaded SPMD model for general purpose 
computing on GPUs has been selected as the FPGA 
programming model in the FCUDA framework [15].  

All of these HLS works take advantage of the abundant 
spatial parallelism in FPGAs to exploit the inherent 
application parallelism. However, in most cases, application 
parallelism is extracted only from a single level of 
granularity (e.g. loop [13,6,7], stream pipeline [14] or 
procedure granularity [15]). Moreover, the impact of 
additional parallelism on frequency is either ignored (only 
cycles are reported) or dealt with via worst case synthesis 
conditions (i.e. target very low frequency). Exposing more 
parallelism will improve the number of execution cycles but 
may severely affect (more than 10X) the clock period due to 
wire routing and fan-out side effects. Thus, neglecting 
frequency may lead to a worse design in terms of both 
performance and area. 

In this paper, we propose a Multilevel Granularity 
Parallelism Synthesis (ML-GPS) HLS-based framework for 
mapping CUDA kernels onto FPGAs. We leverage 
parallelism extraction at four different granularity levels: i) 
array ii) thread, iii) core and iv) core-cluster. By tuning 
parallelism extraction across different granularities, our goal 



is to find a good balance between execution cycles and 
frequency. ML-GPS is based on existing HLS tools and 
provides an automated framework for i) considering the 
effect of multilevel parallelism extraction on both execution 
cycles and frequency and ii) leveraging HLL code 
transformations (such as unroll-and-jam, procedure call 
replication and array partitioning) to guide the HLS tools in 
multilevel granularity parallelism synthesis.  

Exploration of several configurations in the hardware 
design space is often restricted by the slow synthesis and 
place-&-route (P&R) processes. HLS tools have been used 
for evaluating different design points in previous work [6,7]. 
Execution cycles and area estimates from HLS were 
acquired without going through logic synthesis of the RTL. 
Array partitioning was exploited together with loop unrolling 
to improve compute parallelism and eliminate array access 
bottlenecks.  Given an unroll factor, all the non dependent 
array accesses were partitioned. Such an aggressive 
partitioning strategy may severely impact the clock period, 
though (i.e. array partitioning results in extra address/data 
busses, address decoding and routing logic for on-chip 
memories). In this work, we identify the best array partition 
degree considering both kernel and device characteristics 
through resource and clock period estimation models.  

Various resource/frequency estimation models have been 
proposed [16-18], but not in conjunction with multi-
granularity parallelism extraction. In this work, we propose 
resource and clock period estimation models that predict the 
resource and clock period as a function of the degrees of 
different parallelism granularities (array, thread, core and 
core-cluster). Additionally we incorporate physical layout 
information into the framework by partitioning the design 
into physical layout tiles on the FPGA (each core-cluster is 
placed in one physical tile). Our clock period estimation 
model takes into account the design resource usage and 
layout on the FPGA and predicts the clock period 
degradation due to wire routing. We combine our resource 
and period models with HLS tool execution cycle 
estimations to eliminate the lengthy synthesis and P&R runs 
during design space exploration. To explore the multi-
dimensional design space efficiently, we propose a heuristic 
which leverages our estimation models along with a binary 
search algorithm to prune the design space and minimize the 
number of HLS invocations. Thus the ML-GPS framework 
can efficiently complete the design space exploration within 
minutes (rather than days if synthesis and physical 
implementation were used). More importantly, the design 
space point selected by the ML-GPS search is shown to 
provide up to 7X of speedup with relation to previous work 
[15], while achieving near optimal performance.  

The main contributions in this paper are as follows: 
• We describe an automated multilevel granularity 

parallelism synthesis framework for mapping CUDA 
kernels onto FPGAs. 

• We derive accurate resource and clock period estimation 
models. 

• We propose a design space exploration algorithm for 
fast and near-optimal multi-granularity parallelism 
synthesis.  

II. BACKGROUND AND MOTIVATION 
The ML-GPS framework is based on the FCUDA 

framework [15] (referred to as SL-GPS hereafter) which 
demonstrates a novel HLS-based flow for mapping coarse-
grained parallelism in CUDA kernels onto spatial parallelism 
on reconfigurable fabric. The SPMD CUDA kernels offer a 
concise way for describing work to be done by multiple 
threads which are organized in groups called thread-blocks. 
Each thread-block is executed on a GPU streaming 
multiprocessor (SM) which comprises of several streaming 
processors (SP) that execute the individual threads. SL-GPS 
converts the CUDA kernel threads into thread-loops which 
describe the work of CUDA thread-blocks. Each thread-loop 
is then converted into a custom hardware processing engine 
referred to as core, hereafter. Each core executes the 
iterations (aka threads) within its corresponding thread-loop 
in a sequential fashion and multiple cores are instantiated on 
the FPGA. Thus, coarse grained parallelism is extracted only 
at the granularity of thread-loops (i.e. CUDA thread-blocks). 
CUDA thread-blocks have properties that enable efficient 
extraction of application parallelism onto spatial parallelism. 
First, they execute independently and only synchronize 
through off-chip memory across kernel invocations. In SL-
GPS this translates to multiple instantiated cores that can 
execute in parallel without long inter-core communication 
signals. Second, according to the CUDA programming 
model, each thread-block is assigned to one GPU SM with a 
private set of on-chip memories and registers. In SL-GPS 
this is leveraged by allocating private on-chip BRAMs and 
registers to each core, thus, eliminating memory access 
bottlenecks from shared memories and high fan-out loads 
from shared registers.  

However, exposing parallelism at a single level of 
granularity may result in loss of optimization opportunities 
that may be inherent in different types and granularities of 
parallelism. Finer granularities offer parallelism in a more 
light-weight fashion by incorporating less resource 
replication at the expense of extra communication. On the 
other hand, coarser granularities eliminate part of the 
communication by introducing more redundancy. ML-GPS 
provides a framework for flexible parallelism synthesis of 
different granularities. In addition to the core granularity, the 
proposed framework considers the granularities of thread, 
array and core-cluster. As mentioned earlier, cores 
correspond to CUDA thread-blocks and in ML-GPS each 
core is represented by a procedure (which contains the 
thread-loop). Concurrent procedure calls are utilized to guide 
the instantiation of parallel cores by the HLS tool. Threads 
correspond to thread-loop iterations and are parallelized by 
unrolling the thread-loops. Array access optimization is 
facilitated by array partitioning (only for arrays residing in 
on-chip memories). Finally, core-clusters correspond to 
groups of cores that share a common data communication 
interface (DCI) and placement constraints. The placement 
constraints associated with each core-cluster enforce physical 
proximity and short interconnection wires between the intra-
cluster modules. As shown in Fig. 1, the placement of each 
cluster is constrained within one physical tile.  



Both core- and thread-level parallelism extractions 
contribute to compute logic replication. However threads are 
more resource efficient (compared to cores) as they allow 
more sharing opportunities for memories, registers and other 
resource (Fig. 1). The downside of thread-level parallelism is 
longer and higher fan-out wires between shared resources 
and private logic of each thread as the degree of unroll 
increases. Cores on the other hand require fewer 
communication paths (only share DCI) at the expense of 
higher logic replication (Fig. 1). At an even finer granularity, 
array access parallelism is extracted through array 
partitioning and it enables more memory accesses per clock 
cycle, though at the expense of BRAM resources (each 
partition requires exclusive use of the allocated BRAMs) and 
addressing logic.  

The DCI module includes the logic that carries out the 
data transfers to/from the off-chip memories through the 
DRAM controllers. Sharing a single DCI module among all 
the cores on the FPGA may result in long interconnection 
wires that severely affect frequency, annulling the benefit of 
core-level parallelism. As a downside, DCI units consume 
device resources while providing no execution cycle 
benefits. Core clustering helps eliminate long 

interconnection wires by constraining the cluster logic 
placement within physical tiles. Moreover, pipelining is used 
at the inter-cluster interconnection level (Fig. 1) to connect 
the DCI modules with the DRAM controller.  

The optimal mix of parallelism extraction at different 
granularity levels depends on the application kernel 
characteristics as well as the resource characteristics of the 
FPGA device. Depending on the application, different 
granularity levels will affect execution cycles, clock 
frequency and resource usage in different degrees. Moreover, 
the absolute and relative capacities of different resource 
types in the targeted device will determine which granularity 
of parallelism is more beneficial.   

Fig. 2 depicts a 2D plot of the design space for the mm 
kernel in terms of compute latency vs. resource (slices) 
usage. Each point represents a different configuration (i.e. 
combination of threads, cores, core-clusters and array 
partition degree). We observe that performance is highly 
sensitive to the parallelism extraction configurations. The 
depicted design space includes about 300 configurations and 
their evaluation through logic synthesis and P&R took over 7 
days to complete. The charts in Fig. 3 offer a more detailed 
view of a small subset of design points in terms of cycles, 
clock frequency total thread count and latency, respectively. 
All of the configurations of the depicted subset have high 
resource utilization (greater than 75% of device slices) and 
span a wide range of the design space. The leftmost bar (C0) 
corresponds to the SL-GPS configuration which leverages 
only core-level parallelism, whereas the other configurations 
exploit parallelism in multiple dimensions. In each graph the 
highlighted bar corresponds to the best configuration with 
respect to the corresponding metric. As we can observe, C8 
is the configuration with minimum latency, whereas different 
configurations are optimal in different performance related 
metrics (i.e. cycles, frequency and thread count). The charts 
demonstrate that i) single granularity parallelism extraction 
does not offer optimal performance and ii) performance 
constituents are impacted differently by different parallelism 
granularities.  

III. ML-GPS FRAMEWORK OVERVIEW 
Before we introduce the ML-GPS framework, we first 

describe the corresponding source code transformations 
leveraged for the different parallelism granularities we 
consider.  

Figure 1.  Thread, Core, Core-Cluster and Memory BW granularities 

 

Figure 2.   Design space of mm kernel 
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Figure 3.  Performance attributes of mm design space configurations 
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Threads: unfolding of thread-loop iterations through 
unroll-and-jam transformations (Fig 4b).  

Array: on-chip array access concurrency is controlled by 
the degree of array partitioning, which divides arrays to 
separate partitions (Fig. 4c). Each partition is mapped onto a 
separate BRAM and thus, the array acquires multiple 
memory ports. In this work, array partitioning is applied only 
to arrays with affine accesses [19]. 

Cores: unfolding of threadblock-loop iterations through 
replication of thread-loop function calls (Fig. 4d). Each 
function call corresponds to the instantiation of one parallel 
core.  

Core-cluster: the set of thread-blocks is partitioned to 
subsets, with each subset assigned to one core-cluster.  

The ML-GPS framework leverages three main engines as 
depicted in Fig. 5a: i) a source-to-source transformation 
(SST) engine ii) a design space exploration (DSE) engine 
and iii) a HLS engine. The SST engine takes as input the 
CUDA code along with a set of configuration parameters 
that correspond to the degrees of the different parallelism 
granularities to be exposed in the output code. The 
configuration parameters are generated by the DSE engine 
which takes as input the target FPGA device data and 
determines the configurations that should be evaluated 
during the design space exploration. Finally, the HLS engine 
synthesizes the generated output code of the SST engine to 
RTL. In the ML-GPS framework we use a commercial HLS 
tool [2], which generates highly-optimized RTL code.  

The ML-GPS flow involves three automated main steps 
(Fig. 5b). Initially a kernel profiling step is performed in 
order to build the resource estimation model for each kernel. 
Profiling entails feeding the SST engine with a small set of 
multilevel granularity configurations which are subsequently 
synthesized by the HLS tool to generate the corresponding 
resource utilization estimations. A kernel-specific resource 
model is then built using regression analysis on the HLS 
resource estimations. The number of the profiled 

configuration points determines the accuracy of the resource 
estimation model generated. More configurations result in 
more accurate resource models, though, at the expense of 
extra profiling time. In the ML-GPS framework the user can 
determine the effort spent on profiling.  

After profiling, the design space is determined in the 
second main step. First the total number of core-cluster 
configurations is determined by considering both the 
resource estimation model generated in the 1st step (i.e. take 
into account the kernel characteristics) and the selected 
FPGA device (i.e. take into account the resource availability 
and distribution on the device). Subsequently the thread, 
array partitioning and core dimensions of the design space 
are determined for each core-cluster configuration with the 
help of the resource estimation model.  

Finally in the third main step, design space exploration is 
performed using the resource and the clock period estimation 
models along with cycle estimates from the HLS tool to 
evaluate the performance of the different design points. A 
binary search heuristic is used to trim down the number of 
HLS invocations and prune the design space. The DSE 
engine’s goal is to identify the optimal coordinates in the 
multi-dimensional parallelism granularity space in order to 
maximize the performance of the CUDA kernel on the 
selected FPGA device (i.e. given a fixed resource budget). 

IV. DESIGN SPACE EXPLORATION 
As mentioned previously, exploration of the multilevel 

granularity space is based on estimations of resource, clock 
period and cycles. We estimate resource and clock period 
degradation due to routing through regression analysis based 
equations, whereas we leverage cycle estimations from HLS. 
The formulas used for resource and clock period estimations 
are presented in the following section. To optimize the space 
exploration runtime we employ an efficient search 
optimization that helps minimize the number of HLS tool 
invocations during the search process. This is discussed in 
Section IV.B.  

A. Resource and Clock Period Estimation Models 
The resource model is built during the profiling step of 

the flow. A small number of points in the design space are 
used to generate different configurations of the input kernel 
exposing different granularities of parallelism. The HLS tool 
is fed with the profiled kernel configurations and it returns 
resource estimation results. We classify the resource 
estimations based on the degrees of parallelism exposed at 
the core (CR), thread (TH), and array-partitioning (AP) 
dimensions. Using linear regression we then evaluate the R0, 
R1, R2 R3 and R4 coefficients of (1):  

matmul_tblock( …)  { 
  for(ty=0; ty<bDim.y; ty++) 
    for(tx=0; tx<bDim.x; tx++) { 
      for (k=0; k<BLK_SIZE; ++k) 
        Cs[ty][tx] += As[ty][k] * Bs[k][tx];    
    }                              
} 
 

matmul_tblock( …)  { 
  for(ty=0; ty<bDim.y/2; ty++) 
    for(tx=0; tx<bDim.x; tx++) { 
      for (k=0; k<BLK_SIZE; ++k) 
        Cs[ty][tx] += As[ty][k] * Bs[k][tx]; 
        Cs[ty+bDim.y/2][tx] +=  
             As[ty+bDim.y/2][k] *Bs[k][tx]; 
  } } 

matmul_tblock( …)  { 
  for(ty=0; ty<bDim.y/2; ty++) 
    for(tx=0; tx<bDim.x; tx++) { 
      for (k=0; k<BLK_SIZE; ++k) 
        Cs1[ty][tx] += As1[ty][k] * Bs[k][tx]; 
        Cs2[ty][tx] += As2[ty][k] * Bs[k][tx]; 
  } 
} 
 

for(by=0; by<gDim.y/2; by++) 
    for(bx=0; bx<gDim.x; bx++) { 
       matmul( … ) 
       matmul( … )  
    } 
 

     a)  Original mm code                         b) Unrolled thread-loop                           c) Arrays A and C partitioned                   d) Thread-block concurrency 

Figure 4.  Source code transformations (mm kernel) 

 
     a)  ML-GPS components                                       b) ML-GPS flow  

                                   Figure 5.  ML-GPS Overview 
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Conceptually, the model characterizes the resource usage 
of a core-cluster based on the core number (R1), count of 
threads (R2), array partitioning (R3), and the interaction 
between unrolling and array partitioning (R4). For each type 
of resource (LUT, Flip-Flop, BRAM and DSP) we construct 
a separate equation which represents the core-cluster 
resource usage as a function of the different parallelism 
granularities. These equations are kernel-specific and are 
used during the design space exploration phase for resource 
budgeting as well as for estimating the clock period. The 
total resource count, RFPGA, is equal to the product of the 
core-cluster resource estimation, R, and the number of 
physical tiles, CL, (i.e. number of core-clusters): RFPGA=R × 
CL. 

The clock period model aims to capture the clock period 
degradation resulting from wire routing within the core-
cluster. The HLS-generated RTL is pipelined for a nominal 
clock period defined by the user. However the actual clock 
period of the placed netlist is often degraded (i.e. lengthened) 
due to interconnection wire delays introduced during P&R. 
Through this model we incorporate the effect of different 
parallelism granularities as well as layout information on 
interconnection wires (i.e. wires within the core cluster; 
inter-cluster wires are pipelined appropriately, as mentioned 
earlier) and thus the clock period. The period estimation 
model is described by (2) which is pre-fitted offline using 
synthesis data (synthesized CUDA kernels were used for the 
period estimation model construction): 

݀݋݅ݎ݁ܲ ൌ ଴ܲ ൅ ଵܲ ൈ ݃ܽ݅ܦ ൅ ଶܲ  ൈ ݈݅ݐܷ ൅  
ଷܲ ൈ ܲܣ ൅ ସܲ ൈ  ሺ2ሻ                                  ܪܶ

Diag is calculated using (3) and it corresponds to the 
diagonal length (in slices) of a virtual tile with the following 
properties: i) the total core-cluster slices can fit in the virtual 
tile, ii) the dimensions of the virtual tile do not exceed the 
dimensions of the allocated physical tile and iii) the diagonal 
length of the virtual tile is minimal given the two previous 
constraints. Util in (2) represents the slice utilization rate of 
the physical tile by the core-cluster logic.  

ଶ݃ܽ݅ܦ ൌ ቐ
2 ൈ ܴ௦௟௜௖௘     , ݂݅ ܴ௦௟௜௖௘ ൑ ଶ݉݅ܦ݊݅݉

ଶ݉݅ܦ݊݅݉ ൅ ൬
ܴ௦௟௜௖௘

൰݉݅ܦ݊݅݉
ଶ
, ݂݅ ܴ௦௟௜௖௘ ൐ ଶ݉݅ܦ݊݅݉

     ሺ3ሻ 

where minDim corresponds to the minimum dimension 
of the physical tile (in slices) and Rslice is the slice count of 
the core-cluster logic. Parameters Rslice (hence Diag) and Util 
in (2) are calculated by leveraging the resource model 
described above. Conceptually, parameter Diag incorporates 
the core-cluster resource area and layout information while 
Util incorporates the routing flexibility into the period 
model. AP and TH represent the requirement for extra wire 
connectivity within each core due to array partitioning and 
thread-loop unrolling.   

B. Design Space Search Algorithm 
1) Latency Estimation 

Following the resource model construction for each 
kernel, the multi-dimensional design space can be bound 
given a resource constraint, i.e. an FPGA device target. Our 

goal is to identify the configuration with the minimum 
latency, Lat, within the bound design space. Latency is a 
function of all the parallelism granularity dimensions (i.e. 
thread (TH), array partitioning (AP), core (CR) and core-
cluster (CL)) of the space we consider and is estimated using 
(4):  

,ܪሺܶݐܽܮ ,ܲܣ ,ܴܥ ሻܮܥ ൌ ܿݕܥ ൈ ௕ܰ௟௢௖௞

ܴܥ ൈ ܮܥ ൈ         ݀݋݅ݎ݁ܲ
ሺ4ሻ 

where Nblock represents the total number of kernel thread-
blocks, Cyc is the number of execution cycles required for 
one thread-block and Period is the clock period. As was 
discussed earlier, Period is affected by all the design space 
dimensions and is estimated through our estimation model in 
(2). On the other hand, Cyc is generated by the HLS engine 
and is only affected by the TH and AP dimensions (i.e. the 
HLS engine’s scheduling depends on the thread-loop 
unrolling and array partitioning degrees). Thus for the design 
subspace that corresponds to a pair of unroll (u) and array-
partitioning (m) degrees, Lat is minimized when the 
expression in (5) is minimized. We leverage this observation 
in tandem with our binary search heuristic to prune the 
design space and cut down the HLS invocations.  

,݉,ݑሺܧ ,ܴܥ ሻܮܥ ൌ   ௕ܰ௟௢௖௞

ܴܥ ൈ ܮܥ ൈ  ሺ5ሻ                      ݀݋݅ݎ݁ܲ
 
2) Binary Search Heuristic 

The binary search heuristic is guided by the following 
observation: 

Observation 1: For a given loop unroll factor, latency 
decreases monotonically first with a subsequent monotonic 
increase as the array partition degree increases. 

Fig. 6a depicts the fwt2 kernel latency for different unroll 
and array-partition pairs (u, m). For each point in Fig. 6a, its 
latency is determined by using the core ( ܴܥ௨௠ ) and core-
cluster (  ௨௠ܮܥ  ) values that minimize E in (5), and thus 
minimize Lat. We can observe (Fig. 6a) that the value of 
execution latency as a function of array partition degree for a 
fixed unroll factor decreases monotonically until a global 
optimal point, after which it increases monotonically. 
Intuitively, as the array partition degree increases, on-chip 
array access bandwidth is improved as more array references 

 
                    a)                    Array partition degree 

 
                    b)                     Unroll Factor 

             Figure 6.   Unroll and Array partition effects on latency 
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can take place concurrently (i.e. execution cycles decrease). 
However, after a certain degree (saturation point), any 
further partitioning does not decrease clock cycles. 
Additionally it hurts frequency due to increased wire 
connectivity and higher logic complexity. More importantly, 
further partitioning may constrain coarse granularity 
extraction at the core and core-cluster levels as more 
BRAMS are used by each core. Thus, there exists an optimal 
array partition degree for each unroll factor. Observation 1 
has been verified for other benchmarks as well.  
      A similar trend has also been observed for unroll factor 
(Fig. 6b). For each unroll factor u in Fig. 6b, its latency is 
determined by using its optimal array partition degree m 
from Fig. 6a and core (  ௨௠ܴܥ  ) and core-cluster (  ௨௠ܮܥ  ) 
values. Intuitively, as the unroll factor increases, more 
parallelism is exploited, thus improving the execution 
latency. However, unrolling beyond a certain degree may not 
be beneficial due to array access bottleneck and frequency 
degradation (from increased connectivity and fan-out issues). 
In summary, there is an optimal unrolling degree. 
      Based on the above observation and the intuition behind 
it, in Algorithm 1 we propose a binary search algorithm to 
find the optimal point (unroll factor u and array partition 
degree m).  As shown in Algorithm 1, we search unroll factor 
first followed by array partition degree. Array space[] stores 
the feasible values for each dimension dim, in sorted order 
(line 9). The size and value of space[] are obtained from the 
resource model. Then, we perform binary search for 
dimension dim. In each round of the binary search (line 11-
22), we compare the performance of two middle neighboring 
points (mid, mid+1).  Function Select records the value 
selected for the dimension dim. The comparison result guides 
the search towards one direction (the direction with smaller 
latency) while the other direction is pruned away. In the end 
of the search across each dimension, the best result of the 
current dimension (in terms of execution latency) is returned. 

For each point visited during the search (i.e. (u, m) pair), the 
corresponding execution latency is computed based on (4) 
(line 6). The function UpdateLatency compares the current 
solution with the global best solution and updates it if the 
current solution turns out to be better.   
      Let us consider fwt2, shown in Fig 6, as an example. We 
start searching the unroll degree dimension and compare two 
neighboring points in the middle (2 and 4). For each unroll 
factor (2 and 4), its minimal latency is returned by 
recursively searching next dimension in a binary search 
fashion. The best solution so far is stored and the latency 
comparison of unroll factors (2 and 4) will indicate the 
subsequent search direction. The complexity of our binary 
search is log|U|×log|M|, where U and M represent the design 
dimensions of thread and array partition.  

V. EXPERIMENTAL RESULTS 
The goals of our experimental study are threefold: i) to 

evaluate the effectiveness of the estimation models and the 
search algorithm employed in ML-GPS, ii) to measure the 
performance advantage offered by considering multiple 
parallelism granularities in ML-GPS versus SL-GPS [15] 
and iii) to compare FPGA and GPU execution latency and 
energy consumption.  

The CUDA kernels used in our experimental evaluations 
come from the CUDA SDK [8] and Parboil [20] suites and 
are described in Table I. The 1st column of Table I lists the 
application names and kernel aliases, the 2nd column details 
the input/output data dimensions and the 3rd column gives a 
short description of the application that corresponds to the 
kernel. In the experiments detailed in the following sections, 
we focus on integer computation performance and thus have 
modified the original kernels to include only integer 
arithmetic. Moreover, we explore the flexibility of the 
reconfigurable logic by evaluating the effect of different 
bitwidths on performance. 

TABLE I.  CUDA KERNELS 

Application  
(Kernel Name) 

Data 
Dimensions 

Description 

Matrix Multiply 
(mm) 

4096x4096 
arrays 

Computes multiplication of two 
arrays (used in many 

applications) 
Fast Walsh Transform 

(fwt1) 32MB Vector 

Walsh-Hadamart transform is a 
generalized Fourier 

transformation used in various 
engineering applications 

Fast Walsh Transform 
(fwt2) 

Coulombic Potential 
(cp) 

512x512 grid, 
40000 atoms 

Computation of electrostatic 
potential in a volume 

containing charged atoms 
Discreet Wavelet 
Transform (dwt) 120K points 1D DWT for Haar Wavelet and 

signals 

A. ML-GPS Design Space Exploration 
We have employed a mid-size Virtex 5 device (VSX50T) 

to explore the exhaustive design space of parallelism 
extraction in the multi-dimensional space we consider. Fig. 
7a and 7c depict the entire design space for mm and fwt2 
kernels. Both maps consist of around 200 design points that 
have been evaluated by running the complete 

Algorithm 1. Binary Search 

1   /* search sequence: unroll followed by array partition */; 
2   Search (1); 
 
3   Search (dim) 
4        if search all the dimensions then 
5                     Let (ݑ,݉) be unroll and array partition pair. 
ݐ݈ܽ                     6 ൌ ,݉,ݑሺݐܽܮ  ,௨௠ܴܥ  ;௨௠ሻܮܥ

7                     UpdateLatency (݈ܽݑ ,ݐ, ݉); 
8                     return ݈ܽݐ; 
9           Let space[] be the design space of dimension dim ; 
10        low = 1; high = |Space| ; 
11        while low <= high do 
12            mid   = (low + high) / 2; 
13                   Select(dim,  mid); 
14                  res_mid  =  Search(dim + 1); 
15             Select(dim,  mid + 1); 
16                   res_midPlus = Search(dim + 1); 
17            if  res_mid < res_midPlus then 
18                    high = mid - 1; /* search left */ 
19                    Update(cur_best,  res_mid); 
20                   else 
21                    low = mid + 2; /* search right */ 
22                    Update(cur_best,  res_midPlus); 
23      return cur_best 



implementation flow: HLS followed by logic synthesis and 
P&R. Each design point corresponds to a unique 
configuration of thread, array, core and core-cluster 
parameters. Fig. 7b and 7d portray a subset of design points 
that are within 3X of the optimal configuration. The ‘X’ 
markers highlight the configuration point identified by the 
design space exploration (DSE) engine of the ML-GPS 
framework. Our experiments indicate that the configuration 
selected by the proposed search framework is, on average, 
within 10% of the optimal configuration’s latency.  

As described earlier, the DSE engine employs resource 
and clock period estimation models and invokes the HLS 
engine to profile the kernel and acquire cycle estimations. 
Thus, the design space exploration completes within several 
minutes compared to running synthesis and P&R which may 
require several days for multiple configurations.  

B. ML-GPS versus SL-GPS 
We compare the ML-GPS framework with SL-GPS [15] 

where parallelism was exposed only across the core 
dimension. Fig. 8 shows the normalized comparison data for 
a set of kernels. For these experiments we targeted a mid-
size virtex5 FPGA device (VSX50T). The ML-GPS space 
exploration framework was used to identify the best 
configuration in the multi-granularity design space. Then the 
identified configuration was compared with the 
configuration that utilizes the maximum number of cores 
(SL-GPS) given the device resource budget. The comparison 
depicted in Fig. 8 is based on execution latencies derived 
from actual logic and physical synthesis implementations.  

For each kernel we have generated two integer versions 
with different bitwidth arithmetic: 16-bit and 32-bit. Our 
experimental results show that performance is improved by 
up to 7X when multi-granularity levels of parallelism are 
considered. Note that for the fwt1_16 kernel there is no 
performance improvement. The reason for this is due to the 

multiple access patterns (with different strides) applied on 
the fwt1 kernel arrays. This renders static array partitioning 
infeasible without dynamic multiplexing of each access to 
the right array partition. As a result, array partitioning is not 
considered for fwt1 (in both bitwidth versions), thus 
impacting the performance contribution of unrolling (i.e. 
parallelism is exposed mainly across the core and core-
cluster dimensions). The limited degrees of freedom in 
parallelism extraction result in small performance 
improvements for the 32-bit version and no performance 
improvement for the 16-bit version of fwt1.   

C. ML-GPS versus GPU 
1) Performance 

In this set of experiments we compare the performance of 
the FPGA-based hardware configuration identified by ML-
GPS with the software execution on the GPU. For the GPU 
performance evaluation we use the Nvidia 9800 GX2 card 
which hosts two G92 devices, each with 128 stream 
processors. We utilize a single G92 device in our 
experimental setup. In terms of FPGA device we target one 
of the largest Xilinx Virtex5 devices (VSX240T) which 
includes a rich collection of embedded DSP (1056) and 
BRAM (1032) macros. The FPGA and GPU devices have 
been selected to ensure a fair comparison with regards to 
process technology (65nm) and transistor count.  

In these comparison results we include both the compute 
latencies as well as the data transfer latencies to/from off-
chip memories. The G92 device offers 64GB/sec peak off-
chip bandwidth. For the FPGA device we evaluate three 
different off-chip bandwidth capacities: 8, 16 and 64GB/sec. 
Fig. 9a depicts the FPGA execution latencies for the ML-
GPS chosen configuration, normalized with regards to the 
GPU latency. First, we can observe that the 16-bit kernels 
perform better than the corresponding 32-bit kernel versions 
on the FPGA (note that the GPU execution latencies are 
based on the 32-bit kernel versions). This is due to smaller 
data communication volumes (half-size values), as well as 
higher compute concurrency (smaller compute units allow 
higher concurrency). Second, off-chip bandwidth has a 
significant effect on performance, especially for kernels with 
high off-chip bandwidth data traffic (e.g. fwt2). With 
equivalent off-chip bandwidths (i.e. 64GB/s), the FPGA is 
faster than the GPU for half of the kernels.  

2) Energy 
Using the same FPGA and GPU devices as previously, 

we evaluate energy consumptions. For the GPU device we 

 
          a)  mm design space                                      b) mm design subspace               c)   fwt2 design space                            d) fwt2 design subspace 

                                                                                                 Figure 7.   Multi-granularity parallelism design spaces 
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use the reported power consumption of 170W (i.e. 270W 
system – 100W board). For the FPGA chip we use the Xilinx 
Power Estimator tool. The comparison results are depicted in 
Fig. 9b, normalized with regard to the GPU results. The 
energy consumed by the FPGA execution is less than 16% of 
the GPU energy consumption for all of the kernels. The 16-
bit kernels show significant energy savings compared to the 
corresponding 32-bit versions due to fewer DSP and BRAM 
macro resources utilized per operation and operand, 
respectively.  

VI. CONCLUSIONS 
In this paper we present a novel framework, ML-GPS, 

for automated extraction of multilevel granularity parallelism 
from CUDA kernels to hardware spatial parallelism on the 
FPGA. The ML-GPS framework addresses the usability 
challenges of FPGAs. It combines the higher programming 
abstraction offered by HLS with multilevel granularity 
parallelism synthesis enabled by source code transformations 
(SST engine) and a fast design space exploration (DSE) 
engine. By leveraging efficient and accurate resource and 
clock period estimation models the proposed framework 
guides the design space exploration towards a configuration 
that is customized for the target FPGA and delivers high 
compute performance. Our experimental results show that 
ML-GPS achieves up to 7X speedup compared to SL-GPS 
[15]. In comparison with GPU, FPGA (ML-GPS) is shown 
to have competitive performance at a much lower power 
footprint. The current framework implementation leverages 
the CUDA programming model (thread and thread-block) 
and the AutoPilot HLS tool (procedure level parallelism 
support). Other SPMD-based programming models (e.g. 
OpenCL [9]) and alternative HLS tools could be easily 
supported in the future.  
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Figure 9.  FPGA vs. GPU latency and energy comparison 
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