
Optimality Study of Resource Binding with Multi-Vdds
Deming Chen Jason Cong, Yiping Fan Junjuan Xu

Department of Electrical and
Computer Engineering

Computer Science Department Computer Science and
Technology Department

University of Illinois at
Urbana-Champaign, USA

University of California, Los Angeles,
USA

Peking University, Beijing, PRC

dchen@uiuc.edu {cong, fanyp}@cs.ucla.edu junjuan@gmail.com

ABSTRACT
Deploying multiple supply voltages (multi-Vdds) on one chip is an
important technique to reduce dynamic power consumption. In this
work we present an optimality study for resource binding targeting
designs with multi-Vdds. This is similar to the voltage-island design
concept, except that the granularity of our voltage island is on the
functional-unit level as opposed to the core level. We are interested
in achieving the maximum number of low-Vdd operations and, in
the same time, minimizing switching activity during functional unit
binding. To the best of our knowledge, there is no known optimal
solution to this problem. To compute an optimal solution for this
problem and examine the quality gap between our solution and
previous heuristic solutions, we formulate this problem as a
min-cost network flow problem, but with special equal-flow
constraints. This formulation leads to an easy reduction to the
integer linear programming (ILP) solution and also enables efficient
approximate solution by Lagrangian relaxation. Experimental
results show that the optimal solution computed based on our
formulation provides 7% more low-Vdd operations and also reduces
the total switching activity by 20% compared to one of the best
known heuristic algorithms that consider multi-Vdd assignments
only.

Categories and Subject Descriptors
B.6.3 [Hardware]: Design Aids – optimization; G.2.2
[Mathematics of Computing]: Graph Theory – network problems

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Behavioral synthesis, resource binding, low power design

1. INTRODUCTION
There are two major sources of power consumption – dynamic
power and leakage power. Dynamic power is consumed when
signal transitions take place at gate outputs. Leakage power (or
static power) is consumed when the circuit is either active or idle.
With the current technology, dynamic power is still the major part
of the total power consumption. It can be calculated as Pd =
0.5⋅S⋅C⋅Vdd

2⋅f, where S denotes the switching activity of the circuit,
C denotes the effective capacitance, Vdd is the supply voltage, and f
is the operating frequency.

Deploying multiple supply voltages is one of the most effective
techniques to reduce dynamic power under performance constraint.
This technique has the advantage of reducing power dissipation
without sacrificing the performance of the system. When the
threshold voltage for the transistors stays as a constant, the delays of
the resources become longer as the supply voltage scales down.
Therefore, we can assign high-Vdd to critical paths to maintain high
performance and low-Vdd to non-critical paths to save power.
Clusters of high-Vdd cells and low-Vdd cells were first used in [21].
The work in [20] adopted multiple supply voltages in the real design
of a MPEG4 video codec. Researchers are working from various
abstraction levels to explore the advantages of multiple supply
voltages. Specifically, there are works on system level [10][12][18],
behavioral level [7][11][14][16], logic level [8][9], and physical
level [13][22]. Our work focuses on power optimization at the
behavioral level. In general, the higher the design level is, the more
critical the design decisions are for the quality of the final product.

The essence of behavioral synthesis with multiple supply
voltages is to assign low-Vdd values to as many operations as
possible under latency and resource constraints. In [17], an optimal
solution was given for time-constrained scheduling problem under
variable voltages. However, it did not consider resource constraints.
The works in [11][14][16] proposed different heuristics for the
time- and resource-constrained scheduling and binding problem
under multiple voltages. These works adopted iterative methods to
perform the two sub-tasks simultaneously. However, no switching
activity was considered in their formulations. On the other hand, the
works in [4][5][15] minimized switching activity for various
resources, such as functional units and buses. However, these works
only targeted single-Vdd case.

In [7], a low-power binding algorithm for dual-Vdd designs was
proposed to maximize the number of low-Vdd operations and
minimize switching activity, with the assumption that voltages
could be dynamically configured at run time for each functional unit.
Each functional unit is connected to both low-Vdd and high-Vdd
power supplies. Therefore, it is possible that a functional unit may
execute an operation with low Vdd and then switch to high Vdd for
execution of the next operation. Although dynamic voltage
configuration for functional units may have a larger chance to
achieve better power savings as it provides a larger flexibility for
the voltage assignment of each operation in the design, this
approach also introduces extra latency, area, and power costs. As
mentioned in [7], the clock period needs to include extra time to
accommodate the time required for voltage switching between
different voltage configurations and thus leads to longer total
latency. Voltage switching itself also consumes power and may
cause undesirable signal noise, which was not modeled in [7]. In
addition, it requires complex control logic and a full chip dual-rail
power supply system, thus with a larger area overhead.

In this work we target architectures where the voltages of
functional units are fixed. That is, the voltages of functional units
are either high or low and can not change during run time. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007…$5.00.

approach is similar to the voltage-island concept [10][12], except
that the granularity of our voltage island is on the functional-unit
level as opposed to the core level. Fixed voltage configuration does
not have problems discussed above for dynamically
voltage-configurable functional units. Also, it may not require a
full-chip dual-rail power supply system because each functional unit
is only driven by a single Vdd. However, to the best of our
knowledge, there is no known optimal solution to such multi-Vdd
resource binding problem with fixed voltage configuration.

In this paper we concentrate on the dual-Vdd case (one low Vdd
and one high Vdd) to demonstrate the optimality of our algorithm.
Our method can be easily extended for more Vdds. Given a
scheduled DFG (data-flow graph) and resource constraints, we
transform the dual-Vdd binding problem into a network flow
problem with extra constraints (equal integral flow constraints). We
prove that when we achieve the min-cost flow under the equal-flow
constraint, we achieve the optimal binding solution under dual-Vdds,
i.e., maximizing the total number of low-Vdd operations and
minimizing the total switching activity simultaneously. Although
the min-cost flow problem with equal integral flow constraint is a
difficult problem (NP-hard) [2], our formulation has several values:
(i) It leads to an easy reduction to the integer linear programming
formulation, so that we can use an exiting ILP solver to get an
optimal solution; (2) It enables efficient approximate solution by
other mathematical programming method, such as Lagrangian
relaxation as shown in [3]; (3) We hope that our formulation
provides a graph-theoretical framework for us and others to study
the exact complexity of the problem (note that there is no
conclusion yet whether the multi-Vdd resource binding problem
with fixed voltage configuration is NP-hard or polynomial-time
solvable); (4) Finally, using the optimal solution provided by the
ILP solver, for the first time, we are able to measure the optimality
gap of the previous heuristics to our solution.

The remainder of this paper is organized as follows. Sections II
and III provide the problem formulation and network construction.
Section IV proves the optimality of our algorithm and generates the
binding and voltage assignment solution. Section V shows
experimental results, and Section VI concludes this paper.

2. MOTIVATION AND PROBLEM
FORMULATION
For data-intensive designs with behavioral description, the
operations and their data dependencies can be represented by a data
flow graph DFG, G = (V, E). Set V corresponds to operations and
set E corresponds to data flowing between operations. An edge e =
(x, y) | x, y ∈ V, a ∈ E indicates there is a data dependency between
operation x and y. Scheduling assigns operations to control steps so
that the overall execution latency meets a certain time constraint,
and the number of resources used also meets a certain resource
bound. After scheduling, the life time of each operation in the DFG
is the time during which the operation is active. The resource
binding of operations of different type (e.g., addition and
multiplication) is performed separately. We use Vf to represent the
group of operations of type f. For two operations vi and vj of type f, if
their corresponding life times do not overlap and operation vi comes
before vj, we call operations vi and vj compatible with each other,
and they can be bound into a single functional unit (FU) without life
time conflicts. We denote this compatibility as vi → vj. With the
resource constraint, the available number of functional units of type
f is denoted as Nf. We denote the minimum required number of
functional units for Vf as Min_FUf. Apparently, Nf should be ≥
Min_FUf.

To consider dual-Vdd assignment on a scheduled DFG, we
introduce several definitions (some are borrowed from [7]). An
operation v is extendable if v can be assigned to the low Vdd and
executed in multiple clock cycles, and the extended execution delay
of v will not violate the overall latency constraint, and in the same
time, the data dependencies between v and other operations are still
valid. In other words, v will still generate its data in time so that the
data can flow to all the other operations that require it. Among Vf
operations, the extendable operations are denoted as Ve. If v is
assigned to low Vdd in the final binding solution, we say v is
extended. If vi is still compatible with vj after vi is being assigned to
low Vdd, we say that vi and vj are extendable-compatible and denote
this case as vi ⇒ vj. Under the timing- and resource-constraints, and
each FU can be assigned to either low-Vdd or high-Vdd, the
maximum number of extended operations of type f is denoted as
MaxEf. Apparently, MaxEf ≤ |Ve|.

Table 1. Extendable and Maximum Extended Operations
Benchmark Node# |Ve| MaxE Ratio
aircraft 422 211 56 27%
chem 342 82 26 32%
dir 127 36 12 33%
honda 107 33 8 24%
lee 49 20 11 55%
mcm 94 11 5 45%
pr 42 12 2 17%
u5ml 565 184 35 19%
wang 48 16 6 38%
Avg. - - - 32%

Due to the resource constraint, not all extendable operations can

be extended eventually. We conducted experiments on a set of
real-life benchmarks from [19], including several different DCT
algorithms such as pr, wang, lee, and dir, and several DSP programs
such as aircraft, mcm, honda, chem, and u5ml. The results are
summarized in Table 1. The column “node#” lists the operation
number for each benchmark. The column “|Ve|” lists the total
number of extendable additions and multiplications under a
scheduling solution. The column “MaxE” lists the maximum
number of extended operations under timing and resource
constraints. We use an integer-linear program (ILP) to get MaxEadd
and MaxEmul and then sum them up to get MaxE. We can see that
the average ratio of the maximum extended operations over
extendable operations is only 32%. This means that there are many
different ways to select the maximum number of extended
operations. Different voltage assignment leads to different
compatibility of operations and thus different resource binding
solution space. In addition, the total switching activity of the design
will be affected by the voltage assignment as well. How to select the
extended operations and at the same time minimize the switching
activity is the problem to be solved in this paper. We formulate this
problem as follows:

Given: (1) A scheduled DFG G(V, E); (2) Cycle latency
constraint Φ; (3) A set of available functional units R. Each
functional unit can be configured to use a fixed voltage level: either
VddH (high Vdd) or VddL (low Vdd); (4) Switching activity
between each pair of compatible operations, (0 ≤ si,j ≤ 1 | vi and vj
have the same operation type).

Objective: Decide the voltage for each functional unit, and bind
all operations to functional units under the timing- and
resource-constraints, so that the number of operations with VddL is
maximized and the total switching activities of functional units are
minimized.

3. ALGORITHM DESCRIPTION AND
NETWORK FLOW FORMULATION
Network flow formulation has been used previously for binding
problems to reduce total switching activity [4][5][7][15]. In [4], an
optimal low-power register binding algorithm was presented. In [5],
the same authors formulated functional unit binding for low power
as a multi-commodity flow problem. The inter-frame binding
constraints made the problem hard. They then used ILP to solve the
problem. In [15], a single-commodity network flow was used to
solve the bus binding problem. It then presented a heuristic to fulfill
the inter-frame binding constraints. None of these works considered
dual-Vdds in their formulation. In [7], dual Vdds were considered
during binding. It derived an optimal solution to achieve the
maximum number of low-Vdd operations with switching activity
minimization, with the assumption that voltages could be
dynamically configured at run time for each functional unit.

In our work, since we have an extra constraint that each FU can
only be driven by a single Vdd, the problem becomes harder. We
need to guarantee that only extended operations can be bound
together for low Vdd, and only un-extended operations can be
bound together for high Vdd although all of these operations can be
either extendable or un-extendable themselves. We will show that
through proper network construction and an optimal solution based
on the min-cost flow algorithm, we can assign the maximum
number of operations to low Vdd with the minimum switching
activity without violating the resource and latency constraints. The
direct effect of our solution is to enlarge the total number of FUs
driven by low Vdd while guaranteeing that all the FUs switch the
minimum. Algorithm 1 highlights our overall algorithm for the
dual-Vdd case.

Algorithm 1
Input: A scheduled DFG G = (V, E); latency constraint Φ; a set

of resources R; VddH and VddL; switching activity sij on vi →
vj, vi, vj ∈ V.

Output: A Vdd assignment on operations: {Av: Vdd to v | for all
v, where v ∈ V and Vdd ∈ {VddH, VddL}}. We denote vVddL if
v is assigned VddL and vVddH otherwise;

A functional unit binding: {Bu: v to u | for all v, where v ∈
V and u ∈ R}. vVddL nodes will be bound to u driven by VddL,
and vVddH nodes will be bound to u driven by VddH.

Goal: Maximize the number of vVddL under constraints Φ and R;
minimize the total switching activity on R.

Algorithm Outline:
(1) From G, build a network Hs enclosing extendable and
compatible information with regard to the nodes in V;

 (2) Assign cost, capacity constraints to the edges of Hs;
(3) Solve the min-cost flow problem on Hs with a set of equal
integral flow constraints;
(4) Derive Vdd assignment and binding solution based on the
solution in (3).

End

We will introduce these steps in the current and next sections in
details. A network Hs = (s, t, Vn, En, C, Kl, Ku) is constructed based
on Vf in the DFG and the compatibilities of operations. First, there
are source vertex s and sink vertex t. Vn is the vertex set, and En is
the edge set of the network. We use extra vertices to provide voltage
assignment consideration and control the voltage assignment for
functional units. If v ∈ Vf is not extendable, v has only one
corresponding vertex in Vn. If v is extendable, v has three
corresponding vertices in Vn, v, va and vb. va and vb are called
a-vertex and b-vertex of v. Edges (va, v) and (v, vb) are in En. s is

connected to all v and va, and all v and vb are connected to t. The
connection between vi and vj ∈ Vf can be classified into the
following five categories:

1. If vi → vj, and both nodes are not extendable, (vi, vj) is in En.
2. If vi ⇒ vj, and both nodes are extendable, (vi, vj) and (vib, vja)

are in En.
3. If vi and vj are extendable, vi → vj, but vi !⇒ vj, only (vib, vja) is

in En.
4. If vi is not extendable, vj is extendable, and vi → vj, (vi, vja) is in

En.
5. If vi is extendable, vj is not extendable, and vi → vj, (vib, vj) is

in En.
Each edge is associated with a weight, which represents the cost

of binding two operations into a single FU with the voltage
assignment on the FU. This cost is the estimated switching activity
between these two operations when they execute one after another.

1

3 2

5

4 6

1

2

4

cstep 1

cstep 2

cstep 3

cstep 4

cstep 5

(a) (b)

3

6

5

Figure 1. A Scheduled DFG

1

2 3

5

4

5a

3b

3a

5b

s

6

6a

6b

t

VR VL

Figure 2. Network Hs

In the following, we will use the example in Figure 1 to illustrate
the construction of Hs. Figure 1(a) is a scheduled DFG including six
additions, among which operations 3, 5 and 6 are extendable, and
operations 1, 2 and 4 are not extendable (Figure 1 (b)). Here we
assume additions with VddH need 1 cycle and VddL need 2 cycles
to finish the operation. The constructed network is shown in Figure
2. For the purpose of simplification, edges (s, 5), (s, 5a), (3, t), (3b, t),
(6, t) and (6b, t) are not drawn in the network. Operations 3 and 5
are extendable, and after extension of operation 3, they are still
compatible. Therefore, edges (3, 5) and (3b, 5a) exist in En (category
2). Operation 6 is extendable, but operation 3 is not compatible with
it after extension. Therefore, there is only edge (3b, 6a) in En
(category 3) and no edge from operation 3 to operation 6. Similarly,

operations 6 and 5 are compatible only before their extension, so
there is only the edge (6b, 5a).

In Figure 2, except node s and t, the other nodes of Hs are
divided into two parts. The left part includes nodes corresponding to
extendable operations, denoted as VL. The right part is denoted as VR,
including un-extendable nodes and the a-vertex and b-vertex of
extendable operations. The flow through a node vl ∈ VL can only
come from s, other nodes in VL, or vla. The outcome flow of vl can
only go to t, other nodes in VL, or vlb. There is no edge from vr ∈ VR
to vl ∈ VL. Their connection has to go through node vla. In a similar
way, there is no edge from vl to vr either. Their connection has to go
through node vlb. We can treat va and vb as the connecting nodes
between vr ∈ VR and vl ∈ VL.

To assign voltages for operations using the network flows of Hs,
we define that if a unit flow through vl ∈ VL comes from s or other
nodes in VL, vl will be assigned to VddL; otherwise, vl will be
assigned to VddH. Node vr ∈ VR always works under VddH. In
addition, all the operations visited by one single unit flow will be
bound to the same functional unit. Since each functional unit can
only have one voltage, those operations bound together will have
the same voltage assignment. To guarantee all the operations visited
by a unit flow are assigned to the same voltage, we require that
edges (vla, vl) and (vl, vlb) either both exist in the unit flow, or none
of them exists in the flow. With this additional constraint on the
network flow, if a unit flow coming into vl originates from vla, this
flow has to go to vlb. If a unit flow coming into vl originates from s
or other nodes in VL, this flow has to go to t or other nodes in VL. In
this way, a flow coming from VR region would go back to VR region
eventually, and a flow in VL region will always stay in VL region.
We call a unit flow satisfying the above constraint a valid flow. In
the following, all the flows are valid if not specified.

The formal construction of HS = (s, t, Vn, En, C, Kl, Ku):
Vn = Vf ∪ {s, t} ∪ {va , vb | v ∈ Ve}
En = {(s, v), (v, t) | v ∈ Vf}

∪ {(s, va), (vb, t), (va, v), (v, vb) | v ∈ Ve}
 ∪ {(vi, vj) | vi → vj; i ≠ j; vi, vj ∈ Vf − Ve}
 ∪ {(vi, vj), (vib, vja) | vi ⇒ vj; i ≠ j; vi, vj ∈ Ve}
 ∪ {(vib, vja) | vi → vj; vi !⇒ vj; i ≠ j; vi, vj ∈ Ve}
 ∪ {(vi, vja) | vi → vj; i ≠ j; vi ∈ Vf − Ve; vj ∈ Ve}
 ∪ {(vib, vj) | vi → vj; i ≠ j; vi ∈ Ve; vj ∈ Vf − Ve}
C(s, v) = –L | v ∈ Vf − Ve
C(s, va) = –L | v ∈ Ve
C(s, v) = –T | v ∈ Ve
C(v, t) = 0 | v ∈ Vf
C(vb, t) = 0 | v ∈ Ve
C(va, v) = 0 | v ∈ Ve
C(v, vb) = 0 | v ∈ Ve
C(vi, vj) = –L × (1 – si,j) | vi → vj; i ≠ j; vi, vj ∈ Vf − Ve
C(vi, vj) = –T – L × (1 – si,j) | vi ⇒ vj; i ≠ j; vi, vj ∈ Ve
C(vib, vja) = – L × (1 – si,j) | vi → vj; i ≠ j; vi, vj ∈ Ve
C(vi, vja) = –L × (1 – si,j) | vi → vj; i ≠ j; vi ∈ Vf − Ve; vj ∈ Ve
C(vib, vj) = –L × (1 – si,j)| vi → vj; i ≠ j; vi ∈ Ve; vj ∈ Vf − Ve
f(va, v) = f(v, vb) | v ∈ Ve
Ku (en) = 1 | en ∈ En
Kl (en) = 0 | en ∈ En

where C is the cost assigned on the edges; Kl is the flow capacity
lower bound for an edge; and Ku is the flow capacity upper bound.
sij is the switching activity on the edge (vi, vj). L is a positive
constant and is set as 100. L is used to scale the costs into integer
numbers. To maximize the number of extended operations, we set
C(vi, vj) as –T – L × (1 – si,j) when vi ⇒ vj, and C(s, v) as –T for v ∈

Ve, where T ＝ L × (|Vn| + 1). Value T guarantees that v will be
extended if it is the only extendable node within resource constraint
as an extreme case. Notice sij ≤ 1 always. Therefore, we set the cost
C(vi, vj) as a non-positive value. The smaller sij is, the smaller C(vi,
vj) will be. The maximum capacity of each edge is 1, and the flow
of (va, v) and (v, vb) must be equal. From the definition of cost C, it
is easy to see that the resource binding solution derived from the
network flow with smaller total cost has less total switching activity.

To guarantee that there is only a unit flow to go through each
node v ∈ Vf,1 we can apply a node-splitting technique, which was
adopted in [7] as well. This technique duplicates every vertex v ∈ Vf
in Hs into another node vd. There is an edge from v to vd. All the
edges coming out from v will be connected to vd instead. Both the
flow capacity lower bound and upper bound are 1 for the edge (v,
vd). We denote the network after splitting as HS

d. Figure 3 shows the
split version of HS from Figure 2. For clearness, only part of HS

d is
shown.

C(s, 3) = -T

C(s, 3a) = -L

C(3b, 5a)
= –L × (1 – s3,5)

1

2
3

4

3b

3a

s

5

5a

5b

3d

1d

2d

5d

4d

f(3, 3d) = 1

C(3d, 5)
= -T + C(3b, 5a)

Figure 3. The Split Network HS

d

4. SOLUTION GENERATION AND
OPTIMALITY PROOF
In this section, we will prove that the voltage assignment and
resource binding solution decided by the min-cost Nf-flow in HS

d

produces a solution that has the maximum number of extended
operations and the minimum total switching activity on functional
units after binding. For any proper resource binding P of Vf, we
define the basic cost of P as:

∑ −×−=Ω)1(),(jif SLPV

where vi and vj are bound to a common functional unit and vj
executes right after vi.

Lemma 1: The following inequality holds: –T < Ω(Vf, P) – L⋅b ≤ 0,
where 0 ≤ b ≤ |Nf|.
Lemma 2: If a flow is a valid unit-flow in the network HS

d, all the
operations visited by the flow either all work with VddH or all with
VddL. Conversely, the operations that can be bound to the same
functional unit with a voltage assignment correspond to a valid
unit-flow in HS

d.
Lemma 3: If a flow is a k-flow in HS

d, k ≥ Min_FUf, flow must be

1 This is to guarantee that we will have a legal binding solution. If two
unit flows enter the same node, it means that the operation represented by
the node is assigned to two different functional units, which is illegal.

composed of k disjoint unit-flows and include all operations in Vf.
Also, flow can decide a voltage assignment and resource binding
solution for Vf.
Theorem 1: The min-cost Nf-flow of HS

d, min-flow, binds Vf to Nf
functional units. In this solution, MaxEf operations are assigned to
voltage VddL, and the total switching activity of all functional units
are minimized.

The proofs of the above lemmas and theorem are omitted due to
space limit.

If there are three available voltages, we can extend the network
by adding one more region to the left of region VL and adding
needed a-vertices and b-vertices into VL and VR. In the same way,
we can extend HS

d to accommodate more voltages.
Notice that Theorem 1 will not guarantee that the solution will

always produce the minimum dynamic power although in general it
will be the case because power reduction due to voltage scaling is in
quadratic order. Low-Vdd extensions will change the compatible
relations among the nodes in the original graph so it is possible that
we should only extend MaxEf – 1 number of nodes if the effect of
total switching activity reduction by doing so overweighs the effect
of one less low-Vdd operation. We can actually change our network
formulation slightly to achieve the minimum dynamic power
solution theoretically. The only changes will be on the cost
assignments. There is no –T in the cost any more. Instead, there is a
quantity measuring the actual dynamic power reduction ratio due to
voltage scaling. We can have the following two different cost
assignments:

C(s, v) = –L × (VddH2 / VddL2) | v ∈ Ve
C(vi, vj) = –L × (1 – si,j) × (VddH2 / VddL2) | vi ⇒ vj;

 i ≠ j; vi, vj∈Ve.

Other costs are kept the same as before. We can prove that the
min-flow in Theorem 1 with these new cost assignments will
provide us the minimum dynamic power solution. However, there
may be less extended nodes in the solution compared to the number
MaxEf. In reality, this may not be desirable because we cannot
guarantee that the switching activities are estimated 100% accurate.
In practice, we believe people would prefer having the largest
number of extensions because it will guarantee to reduce power in a
large scale no matter how inaccurate the estimated switching
activity will be. In our experimental results, we only show the case
where we achieve MaxEf low-Vdd extensions.

Traditionally, the min-cost network flow can be solved by
shortest path based algorithms [1]. However, except the general
characteristics of networks, HS

d requires that the flow on edges (va, v)
and (v, vb) are equal. The min-cost flow problem with equal integral
flow constraint is a difficult problem (NP-hard) [2]. First of all, after
we form the flow network, it becomes straight forward to reduce the
problem into an ILP problem so we can take advantage of existing
ILP solvers. Meanwhile, we are aware of the potential drawback of
high runtime complexity of ILP. Since we are interested in the
optimality study for our problem, we take the ILP approach in our
experimental results. We observe that the average runtime for
benchmarks with less than 100 nodes is 0.01s. However, for large
designs with more than 100 nodes, the average runtime can be in the
range of several hours. To trade off solution quality with runtime,
we can also use heuristic algorithms. One such an algorithm was
presented in [3], where the authors used a Lagrangian relaxation
technique to tackle the min-cost equal-flow problem. They could
solve problems with up to 1500 nodes and 6000 edges. They
reported solutions within 1% of the optimum with 1%-65% of the
runtime compared to a traditional branch and bound algorithm.

Applying this heuristic and other heuristics and observing their
quality/runtime tradeoff potentials belong to our future work.

5. EXPERIMENTAL RESULTS
To examine the quality gap between our optimal solution and
heuristic solutions, we implemented a heuristic algorithm published
in [14] for comparison purpose. The main idea in [14] was to
perform the resource- and time-constrained scheduling to maximize
the number of extended operations for low Vdd. It started with an
initial schedule assuming every operation was using VddH. Then, it
iteratively assigned VddL to operations followed by a validation
step using a list scheduling algorithm. The low-Vdd assignment was
reversed if the operation extension would violate constraints. In
other words, [14] implicitly bound operations to functional units and
thus decided the voltages for these functional units under the
resource constraint. Therefore, at the end of scheduling, a binding
and voltage assignment solution was also generated. Although this
algorithm dramatically increased the number of extended operations
compared to a generic list scheduling without such a voltage
assignment feature, it could not guarantee to extend the maximum
number of operations for the scheduling solution it produced. In
addition, there was no switching activity considered in this process.

We use the benchmarks mentioned in Section II and compare our
solution to the solution generated by [14]. To have a fair
comparison, we use the same scheduling result generated by [14]
but ignore its voltage and binding solution. We then run our
algorithm honoring the time and resource constraints specified by
the schedule. We take the voltage and timing data from [7], where
adders need 1 cycle at VddH and 2 cycles at VddL, and multipliers
need 3 cycles at VddH and 5 cycles at VddL. VddH is 1.3v and
VddL is 0.8v under 100nm technology. We use simulation-based
method with random input vectors to estimate switching activities
between different operations. The simulation is similar to that used
in [6]. The timing constraint for both [14] and our algorithm is the
critical path latency (can be determined by an ASAP scheduling
algorithm at the beginning).

Table 2 lists the results of extended operations. The second and
third columns are the numbers of extendable additions and
multiplications. The fourth and fifth columns list the numbers of
extended operations by the algorithm in [14]. The last two columns
list the results, MaxEf, from our algorithm. For certain benchmarks,
we observe a large percentage of improvement (e.g., 67%
improvement on multiplications for mcm). On average, we observe
7% improvement over [14]. This indicates that the number of VddL
extensions decided by [14] is already close to the optimal values for
this set of benchmarks.

Table 3 summarizes switching activity (SA) and power results.
The column Lower Bound shows the minimum switching activities
when all operations work at VddH. These data can be calculated by
the algorithm in [4], which is an optimal resource binding algorithm
for switching activity reduction under single Vdd. We denote the
binding solution space as QH when all operations work at VddH.
After extending some operations, the new binding solution space
QHL would be equal or smaller than QH, since some compatible
operations with VddH may not be compatible any more after
assigning to VddL, and thus the solution space is reduced. Therefore,
given a scheduled DFG, the minimum switching activity of any
binding solution after extending some operations must be equal to
or greater than the results given by [4]. We need to mention that
given the maximum number of VddL extensions (i.e., given a
solution space QHL), our algorithm can achieve the minimal
switching activity as shown in Section IV. The heuristic column
corresponds to the binding solutions in [14], and the min-flow

column lists the result given by our algorithm. We can observe that
our algorithm achieves obvious improvement in switching activity
reduction. On average, our switching activity result is 20% smaller
and our power result is 23% smaller (power reduction is larger due
to larger number of low-Vdd operations in our solution). Also,
compared to switching activity lower bound, our algorithm is only
4% higher, which shows that we do not need to sacrifice much on
switching activity for assigning low-Vdd to operations.

It is worth mentioning that because both heuristic and min-flow
have the same resource bound, the leakage values of the designs
from these two algorithms are similar. When min-flow uses a larger
number of VddL functional units, the leakage power of the design
actually will become smaller than what heuristic does. The reason
behind this is that when threshold voltage is maintained as a
constant as the case in our study, leakage power scales down for
VddL due to the scaling of VDS (drain/source potential difference)
and VGS (gate/source potential difference).

Table 2. Comparison of Extended Operations
Max Extendable Heuristic [14] Min-flow Bench-

marks ADD MUL ADD MUL ADD MUL
aircraft 31 180 0 56 0 56
chem 5 77 5 21 5 21
dir 2 34 0 12 0 12
honda 7 26 4 4 5 4
lee 12 8 5 6 6 6
mcm 5 6 2 3 2 5
pr 6 6 0 2 0 2
u5ml 29 155 7 28 8 28
wang 10 6 4 2 4 2

Table 3. Comparison of Switching Activities (SA) and Power
Lower
Bound Heuristic [14] Min-flow Bench-

marks
SA SA Pow(W) SA Pow(W)

aircraft 0.0474 0.0602 4.695 0.0484 3.648
chem 0.0445 0.0557 3.716 0.0450 2.971
dir 0.0421 0.0520 1.213 0.0435 0.986
honda 0.0441 0.0508 1.006 0.0443 0.880
lee 0.0780 0.1047 0.873 0.0826 0.561
mcm 0.0150 0.0221 0.346 0.0163 0.255
pr 0.0838 0.1384 0.914 0.0936 0.618
u5ml 0.0431 0.0575 6.670 0.0434 4.967
wang 0.1020 0.1190 1.006 0.1044 0.863
Avg. - 1 1 -20% -23%

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a network flow-based formulation for the
low-power resource binding problem, considering multi-Vdds and
switching activity simultaneously, while assuming that each
functional unit has a fixed Vdd level. Experimental results show that
the optimal solution computed based on our formulation provides
7% more low-Vdd operations and also reduces the total switching
activity by 20% compared to one of the best known heuristic
algorithms that consider multi-Vdd assignments only. Currently, we
are studying the exact complexity of this problem based on our
network flow formulation. Moreover, we are considering
operational chaining and pipelined functional units into our problem
formulation.

7. ACKNOWLEDGEMENTS
This work is partially supported by the National Science Foundation
under the grants CCR 0096383 and CCR 0306682.

8. REFERENCES
[1] R. K. Ahuja，T. L. Magnanti，and J. B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice-Hall，Englewood
Cliffs，1993.

[2] R. K. Ahuja, J. B. Orlin, G. M. Sechi, and P. Zuddas, “Algorithms
for the Simple Equal Flow Problem,” Management Science,
45(10):1440~1455, 1999.

[3] A. I. Ali, J. Kennington, and B. Shetty, “The Equal Flow
Problem,” European Journal of Operational Research, 36,
107~115, 1988.

[4] J. M. Chang and M. Pedram, “Register Allocation and Binding for
Low Power,” Design Automation Conf, 1995.

[5] J. M. Chang and M. Pedram, “Module Assignment for Low
Power,” Conf. on European Design Automation. 1996. 376~381.

[6] D. Chen, J. Cong, and Y. Fan, “Low-Power High-Level Synthesis
for FPGA Architectures,” Intl. Symp. on Low Power Electronics
and Design. 2003. 134~139.

[7] D. Chen, J. Cong, and J. Xu, “Optimal Module and Voltage
Assignment for Low-Power,” IEEE/ACM Asia South Pacific
Design Automation Conf. 2005. 850~855.

[8] D. Chen, J. Cong, F. Li, and L. He, “Low-Power Technology
Mapping for FPGA Architectures with Dual Supply Voltages,” Intl.
Symp. on Field-Programmable Gate Arrays. 2004. 109~117.

[9] D. Chen and J. Cong, “Delay Optimal Low-Power Circuit
Clustering for FPGAs with Dual Supply Voltages,” Intl. Symp. on
Low Power Electronics and Design. 2004. 70~73.

[10] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu, “Architecting
Voltage Islands in Core-based System-on-a-Chip Designs,” Intl.
Symp. on Low Power Electronics and Design, 2004. 180~185.

[11] M. C. Johnson and K. Roy, “Datapath Scheduling with Multiple
Supply Voltages and Level Converters,” ACM Trans. on Design
Automation of Electronic Systems. 1997. 2(3): 227~248.

[12] D. E. Lackey et al, “Managing Power and Performance for
System-on-Chip Designs Using Voltage Islands,” Intl. Conf. on
Computer-Aided Design. 2002. 195~202.

[13] F. Li, Y. Lin, and L. He, “FPGA Power Reduction Using
Configurable Dual-Vdd,” Design Automation Conf. 2004.
735~740.

[14] Y. R. Lin, C. T. Hwang, and A. C. H. Wu, “Scheduling Techniques
for Variable Voltage Low Power Design,” ACM Trans. on Design
Automation of Electronic Systems. 1997. 2(2): 81~97.

[15] C. G. Lyuh and K. Taewhan, “High-level Synthesis for Low-Power
Based on Network Flow Method,” IEEE Trans. on VLSI Systems.
2003. 11(3): 364~375.

[16] A. Manzak, and C. Chakrabarti, “A Low Power Scheduling
Scheme with Resources Operating at Multiple Voltages,” IEEE
Trans. on VLSI Systems. 2002. 10(1): 6~14.

[17] S. Raje and M. Sarrafzadeh, “Variable Voltage Scheduling,” Intl.
Symp. on Low Power Design. 1995. 9~14.

[18] T. Simunic et al, “Dynamic Voltage Scaling and Power
Management for Portable Systems,” Design Automation Conf.
2001. 524~529.

[19] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic
Transformation Techniques for Simultaneous Optimization of
Latency and Throughput,” IEEE Trans. on VLSI Systems. 1995.
3(1): 2~19.

[20] M. Takahashi et al, “A 60mW MPEG4 Video Codec Using
Clustered Voltage Scaling with Variable Supply-Voltage Scheme,”
Journal of Solid-State Circuits, 1998. 33(11): 1772~1780.

[21] K. Usami and M. Horowitz, “Clustered Voltage Scaling Technique
for Low Power,” Intl. Symp. on Low Power Design. 1995. 3~8.

[22] J. Wang, S. Shieh, J. Wang, and C. Yeh, “Design of Standard Cells
Used in Low-power ASIC's Exploiting the
Multiple-Supply-Voltage Scheme,” IEEE Intl. ASIC Conf. 1998.

