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ABSTRACT 
Deploying multiple supply voltages (multi-Vdds) on one chip is an 
important technique to reduce dynamic power consumption. In this 
work we present an optimality study for resource binding targeting 
designs with multi-Vdds. This is similar to the voltage-island design 
concept, except that the granularity of our voltage island is on the 
functional-unit level as opposed to the core level. We are interested 
in achieving the maximum number of low-Vdd operations and, in 
the same time, minimizing switching activity during functional unit 
binding. To the best of our knowledge, there is no known optimal 
solution to this problem. To compute an optimal solution for this 
problem and examine the quality gap between our solution and 
previous heuristic solutions, we formulate this problem as a 
min-cost network flow problem, but with special equal-flow 
constraints. This formulation leads to an easy reduction to the 
integer linear programming (ILP) solution and also enables efficient 
approximate solution by Lagrangian relaxation. Experimental 
results show that the optimal solution computed based on our 
formulation provides 7% more low-Vdd operations and also reduces 
the total switching activity by 20% compared to one of the best 
known heuristic algorithms that consider multi-Vdd assignments 
only.  
 
Categories and Subject Descriptors 
B.6.3 [Hardware]: Design Aids – optimization; G.2.2 
[Mathematics of Computing]: Graph Theory – network problems 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Behavioral synthesis, resource binding, low power design 
 
1. INTRODUCTION 
There are two major sources of power consumption – dynamic 
power and leakage power. Dynamic power is consumed when 
signal transitions take place at gate outputs. Leakage power (or 
static power) is consumed when the circuit is either active or idle. 
With the current technology, dynamic power is still the major part 
of the total power consumption. It can be calculated as Pd = 
0.5⋅S⋅C⋅Vdd

2⋅f, where S denotes the switching activity of the circuit, 
C denotes the effective capacitance, Vdd is the supply voltage, and f 
is the operating frequency.  

Deploying multiple supply voltages is one of the most effective 
techniques to reduce dynamic power under performance constraint. 
This technique has the advantage of reducing power dissipation 
without sacrificing the performance of the system. When the 
threshold voltage for the transistors stays as a constant, the delays of 
the resources become longer as the supply voltage scales down. 
Therefore, we can assign high-Vdd to critical paths to maintain high 
performance and low-Vdd to non-critical paths to save power. 
Clusters of high-Vdd cells and low-Vdd cells were first used in [21]. 
The work in [20] adopted multiple supply voltages in the real design 
of a MPEG4 video codec. Researchers are working from various 
abstraction levels to explore the advantages of multiple supply 
voltages. Specifically, there are works on system level [10][12][18], 
behavioral level [7][11][14][16], logic level [8][9], and physical 
level [13][22]. Our work focuses on power optimization at the 
behavioral level. In general, the higher the design level is, the more 
critical the design decisions are for the quality of the final product.  

The essence of behavioral synthesis with multiple supply 
voltages is to assign low-Vdd values to as many operations as 
possible under latency and resource constraints. In [17], an optimal 
solution was given for time-constrained scheduling problem under 
variable voltages. However, it did not consider resource constraints. 
The works in [11][14][16] proposed different heuristics for the 
time- and resource-constrained scheduling and binding problem 
under multiple voltages. These works adopted iterative methods to 
perform the two sub-tasks simultaneously. However, no switching 
activity was considered in their formulations. On the other hand, the 
works in [4][5][15] minimized switching activity for various 
resources, such as functional units and buses. However, these works 
only targeted single-Vdd case.  

In [7], a low-power binding algorithm for dual-Vdd designs was 
proposed to maximize the number of low-Vdd operations and 
minimize switching activity, with the assumption that voltages 
could be dynamically configured at run time for each functional unit. 
Each functional unit is connected to both low-Vdd and high-Vdd 
power supplies. Therefore, it is possible that a functional unit may 
execute an operation with low Vdd and then switch to high Vdd for 
execution of the next operation. Although dynamic voltage 
configuration for functional units may have a larger chance to 
achieve better power savings as it provides a larger flexibility for 
the voltage assignment of each operation in the design, this 
approach also introduces extra latency, area, and power costs. As 
mentioned in [7], the clock period needs to include extra time to 
accommodate the time required for voltage switching between 
different voltage configurations and thus leads to longer total 
latency. Voltage switching itself also consumes power and may 
cause undesirable signal noise, which was not modeled in [7]. In 
addition, it requires complex control logic and a full chip dual-rail 
power supply system, thus with a larger area overhead.  

In this work we target architectures where the voltages of 
functional units are fixed. That is, the voltages of functional units 
are either high or low and can not change during run time. This 
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approach is similar to the voltage-island concept [10][12], except 
that the granularity of our voltage island is on the functional-unit 
level as opposed to the core level. Fixed voltage configuration does 
not have problems discussed above for dynamically 
voltage-configurable functional units. Also, it may not require a 
full-chip dual-rail power supply system because each functional unit 
is only driven by a single Vdd. However, to the best of our 
knowledge, there is no known optimal solution to such multi-Vdd 
resource binding problem with fixed voltage configuration. 

In this paper we concentrate on the dual-Vdd case (one low Vdd 
and one high Vdd) to demonstrate the optimality of our algorithm. 
Our method can be easily extended for more Vdds. Given a 
scheduled DFG (data-flow graph) and resource constraints, we 
transform the dual-Vdd binding problem into a network flow 
problem with extra constraints (equal integral flow constraints). We 
prove that when we achieve the min-cost flow under the equal-flow 
constraint, we achieve the optimal binding solution under dual-Vdds, 
i.e., maximizing the total number of low-Vdd operations and 
minimizing the total switching activity simultaneously. Although 
the min-cost flow problem with equal integral flow constraint is a 
difficult problem (NP-hard) [2], our formulation has several values: 
(i) It leads to an easy reduction to the integer linear programming 
formulation, so that we can use an exiting ILP solver to get an 
optimal solution; (2) It enables efficient approximate solution by 
other mathematical programming method, such as Lagrangian 
relaxation as shown in [3]; (3) We hope that our formulation 
provides a graph-theoretical framework for us and others to study 
the exact complexity of the problem (note that there is no 
conclusion yet whether the multi-Vdd resource binding problem 
with fixed voltage configuration is NP-hard or polynomial-time 
solvable); (4) Finally, using the optimal solution provided by the 
ILP solver, for the first time, we are able to measure the optimality 
gap of the previous heuristics to our solution.   

The remainder of this paper is organized as follows. Sections II 
and III provide the problem formulation and network construction. 
Section IV proves the optimality of our algorithm and generates the 
binding and voltage assignment solution. Section V shows 
experimental results, and Section VI concludes this paper. 
 
2. MOTIVATION AND PROBLEM 
FORMULATION 
For data-intensive designs with behavioral description, the 
operations and their data dependencies can be represented by a data 
flow graph DFG, G = (V, E). Set V corresponds to operations and 
set E corresponds to data flowing between operations. An edge e = 
(x, y) | x, y ∈ V, a ∈ E indicates there is a data dependency between 
operation x and y. Scheduling assigns operations to control steps so 
that the overall execution latency meets a certain time constraint, 
and the number of resources used also meets a certain resource 
bound. After scheduling, the life time of each operation in the DFG 
is the time during which the operation is active. The resource 
binding of operations of different type (e.g., addition and 
multiplication) is performed separately. We use Vf to represent the 
group of operations of type f. For two operations vi and vj of type f, if 
their corresponding life times do not overlap and operation vi comes 
before vj, we call operations vi and vj compatible with each other, 
and they can be bound into a single functional unit (FU) without life 
time conflicts. We denote this compatibility as vi → vj. With the 
resource constraint, the available number of functional units of type 
f is denoted as Nf. We denote the minimum required number of 
functional units for Vf as Min_FUf. Apparently, Nf should be ≥ 
Min_FUf. 

To consider dual-Vdd assignment on a scheduled DFG, we 
introduce several definitions (some are borrowed from [7]). An 
operation v is extendable if v can be assigned to the low Vdd and 
executed in multiple clock cycles, and the extended execution delay 
of v will not violate the overall latency constraint, and in the same 
time, the data dependencies between v and other operations are still 
valid. In other words, v will still generate its data in time so that the 
data can flow to all the other operations that require it. Among Vf 
operations, the extendable operations are denoted as Ve. If v is 
assigned to low Vdd in the final binding solution, we say v is 
extended. If vi is still compatible with vj after vi is being assigned to 
low Vdd, we say that vi and vj are extendable-compatible and denote 
this case as vi ⇒ vj. Under the timing- and resource-constraints, and 
each FU can be assigned to either low-Vdd or high-Vdd, the 
maximum number of extended operations of type f is denoted as 
MaxEf. Apparently, MaxEf ≤ |Ve|. 

Table 1. Extendable and Maximum Extended Operations 
Benchmark Node# |Ve| MaxE Ratio 
aircraft 422 211 56 27% 
chem 342 82 26 32% 
dir 127 36 12 33% 
honda 107 33 8 24% 
lee 49 20 11 55% 
mcm 94 11 5 45% 
pr 42 12 2 17% 
u5ml 565 184 35 19% 
wang 48 16 6 38% 
Avg. - - - 32% 
 
Due to the resource constraint, not all extendable operations can 

be extended eventually. We conducted experiments on a set of 
real-life benchmarks from [19], including several different DCT 
algorithms such as pr, wang, lee, and dir, and several DSP programs 
such as aircraft, mcm, honda, chem, and u5ml. The results are 
summarized in Table 1. The column “node#” lists the operation 
number for each benchmark. The column “|Ve|” lists the total 
number of extendable additions and multiplications under a 
scheduling solution. The column “MaxE” lists the maximum 
number of extended operations under timing and resource 
constraints. We use an integer-linear program (ILP) to get MaxEadd 
and MaxEmul and then sum them up to get MaxE. We can see that 
the average ratio of the maximum extended operations over 
extendable operations is only 32%. This means that there are many 
different ways to select the maximum number of extended 
operations. Different voltage assignment leads to different 
compatibility of operations and thus different resource binding 
solution space. In addition, the total switching activity of the design 
will be affected by the voltage assignment as well. How to select the 
extended operations and at the same time minimize the switching 
activity is the problem to be solved in this paper. We formulate this 
problem as follows: 

Given: (1) A scheduled DFG G(V, E); (2) Cycle latency 
constraint Φ; (3) A set of available functional units R. Each 
functional unit can be configured to use a fixed voltage level: either 
VddH (high Vdd) or VddL (low Vdd); (4) Switching activity 
between each pair of compatible operations, (0 ≤ si,j ≤ 1 | vi and vj 
have the same operation type). 

Objective: Decide the voltage for each functional unit, and bind 
all operations to functional units under the timing- and 
resource-constraints, so that the number of operations with VddL is 
maximized and the total switching activities of functional units are 
minimized.   



3. ALGORITHM DESCRIPTION AND 
NETWORK FLOW FORMULATION 
Network flow formulation has been used previously for binding 
problems to reduce total switching activity [4][5][7][15]. In [4], an 
optimal low-power register binding algorithm was presented. In [5], 
the same authors formulated functional unit binding for low power 
as a multi-commodity flow problem. The inter-frame binding 
constraints made the problem hard. They then used ILP to solve the 
problem. In [15], a single-commodity network flow was used to 
solve the bus binding problem. It then presented a heuristic to fulfill 
the inter-frame binding constraints. None of these works considered 
dual-Vdds in their formulation. In [7], dual Vdds were considered 
during binding. It derived an optimal solution to achieve the 
maximum number of low-Vdd operations with switching activity 
minimization, with the assumption that voltages could be 
dynamically configured at run time for each functional unit. 

In our work, since we have an extra constraint that each FU can 
only be driven by a single Vdd, the problem becomes harder. We 
need to guarantee that only extended operations can be bound 
together for low Vdd, and only un-extended operations can be 
bound together for high Vdd although all of these operations can be 
either extendable or un-extendable themselves. We will show that 
through proper network construction and an optimal solution based 
on the min-cost flow algorithm, we can assign the maximum 
number of operations to low Vdd with the minimum switching 
activity without violating the resource and latency constraints. The 
direct effect of our solution is to enlarge the total number of FUs 
driven by low Vdd while guaranteeing that all the FUs switch the 
minimum. Algorithm 1 highlights our overall algorithm for the 
dual-Vdd case. 

Algorithm 1 
Input: A scheduled DFG G = (V, E); latency constraint Φ; a set 

of resources R; VddH and VddL; switching activity sij on vi → 
vj, vi, vj ∈ V. 

Output: A Vdd assignment on operations: {Av: Vdd to v | for all 
v, where v ∈ V and Vdd ∈ {VddH, VddL}}. We denote vVddL if 
v is assigned VddL and vVddH otherwise;  

A functional unit binding: {Bu: v to u | for all v, where v ∈ 
V and u ∈ R}. vVddL nodes will be bound to u driven by VddL, 
and vVddH nodes will be bound to u driven by VddH.  

Goal: Maximize the number of vVddL under constraints Φ and R; 
minimize the total switching activity on R. 

Algorithm Outline: 
(1) From G, build a network Hs enclosing extendable and 
compatible information with regard to the nodes in V; 

 (2) Assign cost, capacity constraints to the edges of Hs; 
(3) Solve the min-cost flow problem on Hs with a set of equal 
integral flow constraints; 
(4) Derive Vdd assignment and binding solution based on the 
solution in (3). 

End 

We will introduce these steps in the current and next sections in 
details. A network Hs = (s, t, Vn, En, C, Kl, Ku) is constructed based 
on Vf in the DFG and the compatibilities of operations. First, there 
are source vertex s and sink vertex t. Vn is the vertex set, and En is 
the edge set of the network. We use extra vertices to provide voltage 
assignment consideration and control the voltage assignment for 
functional units. If v ∈ Vf is not extendable, v has only one 
corresponding vertex in Vn. If v is extendable, v has three 
corresponding vertices in Vn, v, va and vb. va and vb are called 
a-vertex and b-vertex of v. Edges (va, v) and (v, vb) are in En. s is 

connected to all v and va, and all v and vb are connected to t. The 
connection between vi and vj ∈ Vf can be classified into the 
following five categories: 

1. If vi → vj, and both nodes are not extendable, (vi, vj) is in En. 
2. If vi ⇒ vj, and both nodes are extendable, (vi, vj) and (vib, vja) 

are in En. 
3. If vi and vj are extendable, vi → vj, but vi !⇒ vj, only (vib, vja) is 

in En. 
4. If vi is not extendable, vj is extendable, and vi → vj, (vi, vja) is in 

En. 
5. If vi is extendable, vj is not extendable, and vi → vj, (vib, vj) is 

in En. 
Each edge is associated with a weight, which represents the cost 

of binding two operations into a single FU with the voltage 
assignment on the FU. This cost is the estimated switching activity 
between these two operations when they execute one after another. 
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Figure 2. Network Hs 

In the following, we will use the example in Figure 1 to illustrate 
the construction of Hs. Figure 1(a) is a scheduled DFG including six 
additions, among which operations 3, 5 and 6 are extendable, and 
operations 1, 2 and 4 are not extendable (Figure 1 (b)). Here we 
assume additions with VddH need 1 cycle and VddL need 2 cycles 
to finish the operation. The constructed network is shown in Figure 
2. For the purpose of simplification, edges (s, 5), (s, 5a), (3, t), (3b, t), 
(6, t) and (6b, t) are not drawn in the network. Operations 3 and 5 
are extendable, and after extension of operation 3, they are still 
compatible. Therefore, edges (3, 5) and (3b, 5a) exist in En (category 
2). Operation 6 is extendable, but operation 3 is not compatible with 
it after extension. Therefore, there is only edge (3b, 6a) in En 
(category 3) and no edge from operation 3 to operation 6. Similarly, 



operations 6 and 5 are compatible only before their extension, so 
there is only the edge (6b, 5a). 

In Figure 2, except node s and t, the other nodes of Hs are 
divided into two parts. The left part includes nodes corresponding to 
extendable operations, denoted as VL. The right part is denoted as VR, 
including un-extendable nodes and the a-vertex and b-vertex of 
extendable operations. The flow through a node vl ∈ VL can only 
come from s, other nodes in VL, or vla. The outcome flow of vl can 
only go to t, other nodes in VL, or vlb. There is no edge from vr ∈ VR 
to vl ∈ VL. Their connection has to go through node vla. In a similar 
way, there is no edge from vl to vr either. Their connection has to go 
through node vlb. We can treat va and vb as the connecting nodes 
between vr ∈ VR and vl ∈ VL. 

To assign voltages for operations using the network flows of Hs, 
we define that if a unit flow through vl ∈ VL comes from s or other 
nodes in VL, vl will be assigned to VddL; otherwise, vl will be 
assigned to VddH. Node vr ∈ VR always works under VddH. In 
addition, all the operations visited by one single unit flow will be 
bound to the same functional unit. Since each functional unit can 
only have one voltage, those operations bound together will have 
the same voltage assignment. To guarantee all the operations visited 
by a unit flow are assigned to the same voltage, we require that 
edges (vla, vl) and (vl, vlb) either both exist in the unit flow, or none 
of them exists in the flow. With this additional constraint on the 
network flow, if a unit flow coming into vl originates from vla, this 
flow has to go to vlb. If a unit flow coming into vl originates from s 
or other nodes in VL, this flow has to go to t or other nodes in VL. In 
this way, a flow coming from VR region would go back to VR region 
eventually, and a flow in VL region will always stay in VL region. 
We call a unit flow satisfying the above constraint a valid flow. In 
the following, all the flows are valid if not specified. 

The formal construction of HS = (s, t, Vn, En, C, Kl, Ku): 
Vn = Vf ∪ {s, t} ∪ {va , vb | v ∈ Ve} 
En = {(s, v), (v, t) | v ∈ Vf}  

∪ {(s, va), (vb, t), (va, v), (v, vb) | v ∈ Ve}  
  ∪ {(vi, vj) | vi → vj; i ≠ j; vi, vj ∈ Vf − Ve} 
  ∪ {(vi, vj), (vib, vja) | vi ⇒ vj; i ≠ j; vi, vj ∈ Ve} 
  ∪ {(vib, vja) | vi → vj; vi !⇒ vj; i ≠ j; vi, vj ∈ Ve}  
  ∪ {(vi, vja) | vi → vj; i ≠ j; vi ∈ Vf − Ve; vj ∈ Ve} 
  ∪ {(vib, vj) | vi → vj; i ≠ j; vi ∈ Ve; vj ∈ Vf − Ve}  
C(s, v) = –L | v ∈ Vf − Ve      
C(s, va) = –L | v ∈ Ve 
C(s, v) = –T | v ∈ Ve            
C(v, t) = 0 | v ∈ Vf 
C(vb, t) = 0 | v ∈ Ve          
C(va, v) = 0 | v ∈ Ve 
C(v, vb) = 0 | v ∈ Ve 
C(vi, vj) = –L × (1 – si,j) | vi → vj; i ≠ j; vi, vj ∈ Vf − Ve 
C(vi, vj) = –T – L × (1 – si,j) | vi ⇒ vj; i ≠ j; vi, vj ∈ Ve 
C(vib, vja) = – L × (1 – si,j) | vi → vj; i ≠ j; vi, vj ∈ Ve 
C(vi, vja) = –L × (1 – si,j) | vi → vj; i ≠ j; vi ∈ Vf − Ve; vj ∈ Ve 
C(vib, vj) = –L × (1 – si,j)| vi → vj; i ≠ j; vi ∈ Ve; vj ∈ Vf − Ve 
f(va, v) = f(v, vb) | v ∈ Ve 
Ku (en) = 1 | en ∈ En 
Kl (en) = 0 | en ∈ En            

where C is the cost assigned on the edges; Kl is the flow capacity 
lower bound for an edge; and Ku is the flow capacity upper bound. 
sij is the switching activity on the edge (vi, vj). L is a positive 
constant and is set as 100. L is used to scale the costs into integer 
numbers. To maximize the number of extended operations, we set 
C(vi, vj) as –T – L × (1 – si,j) when vi ⇒ vj, and C(s, v) as –T for v ∈ 

Ve, where T ＝ L × (|Vn| + 1). Value T guarantees that v will be 
extended if it is the only extendable node within resource constraint 
as an extreme case. Notice sij ≤ 1 always. Therefore, we set the cost 
C(vi, vj) as a non-positive value. The smaller sij is, the smaller C(vi, 
vj) will be. The maximum capacity of each edge is 1, and the flow 
of (va, v) and (v, vb) must be equal. From the definition of cost C, it 
is easy to see that the resource binding solution derived from the 
network flow with smaller total cost has less total switching activity.  

To guarantee that there is only a unit flow to go through each 
node v ∈ Vf,1 we can apply a node-splitting technique, which was 
adopted in [7] as well. This technique duplicates every vertex v ∈ Vf 
in Hs into another node vd. There is an edge from v to vd. All the 
edges coming out from v will be connected to vd instead. Both the 
flow capacity lower bound and upper bound are 1 for the edge (v, 
vd). We denote the network after splitting as HS

d. Figure 3 shows the 
split version of HS from Figure 2. For clearness, only part of HS

d is 
shown. 
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4. SOLUTION GENERATION AND 
OPTIMALITY PROOF 
In this section, we will prove that the voltage assignment and 
resource binding solution decided by the min-cost Nf-flow in HS

d 

produces a solution that has the maximum number of extended 
operations and the minimum total switching activity on functional 
units after binding. For any proper resource binding P of Vf, we 
define the basic cost of P as: 

∑ −×−=Ω )1(),( jif SLPV
  

where vi and vj are bound to a common functional unit and vj 
executes right after vi.  

Lemma 1: The following inequality holds: –T < Ω(Vf, P) – L⋅b ≤ 0, 
where 0 ≤ b ≤ |Nf|.                
Lemma 2: If a flow is a valid unit-flow in the network HS

d, all the 
operations visited by the flow either all work with VddH or all with 
VddL. Conversely, the operations that can be bound to the same 
functional unit with a voltage assignment correspond to a valid 
unit-flow in HS

d.                
Lemma 3: If a flow is a k-flow in HS

d, k ≥ Min_FUf, flow must be 

                                                        
1 This is to guarantee that we will have a legal binding solution. If two 
unit flows enter the same node, it means that the operation represented by 
the node is assigned to two different functional units, which is illegal. 



composed of k disjoint unit-flows and include all operations in Vf. 
Also, flow can decide a voltage assignment and resource binding 
solution for Vf.                  
Theorem 1: The min-cost Nf-flow of HS

d, min-flow, binds Vf to Nf 
functional units. In this solution, MaxEf operations are assigned to 
voltage VddL, and the total switching activity of all functional units 
are minimized.                

The proofs of the above lemmas and theorem are omitted due to 
space limit.                       

If there are three available voltages, we can extend the network 
by adding one more region to the left of region VL and adding 
needed a-vertices and b-vertices into VL and VR. In the same way, 
we can extend HS

d to accommodate more voltages. 
Notice that Theorem 1 will not guarantee that the solution will 

always produce the minimum dynamic power although in general it 
will be the case because power reduction due to voltage scaling is in 
quadratic order. Low-Vdd extensions will change the compatible 
relations among the nodes in the original graph so it is possible that 
we should only extend MaxEf – 1 number of nodes if the effect of 
total switching activity reduction by doing so overweighs the effect 
of one less low-Vdd operation. We can actually change our network 
formulation slightly to achieve the minimum dynamic power 
solution theoretically. The only changes will be on the cost 
assignments. There is no –T in the cost any more. Instead, there is a 
quantity measuring the actual dynamic power reduction ratio due to 
voltage scaling. We can have the following two different cost 
assignments: 

C(s, v) = –L × (VddH2 / VddL2) | v ∈ Ve  
C(vi, vj) = –L × (1 – si,j) × (VddH2 / VddL2) | vi ⇒ vj;     

               i ≠ j; vi, vj∈Ve.  

Other costs are kept the same as before. We can prove that the 
min-flow in Theorem 1 with these new cost assignments will 
provide us the minimum dynamic power solution. However, there 
may be less extended nodes in the solution compared to the number 
MaxEf. In reality, this may not be desirable because we cannot 
guarantee that the switching activities are estimated 100% accurate. 
In practice, we believe people would prefer having the largest 
number of extensions because it will guarantee to reduce power in a 
large scale no matter how inaccurate the estimated switching 
activity will be. In our experimental results, we only show the case 
where we achieve MaxEf low-Vdd extensions. 

Traditionally, the min-cost network flow can be solved by 
shortest path based algorithms [1]. However, except the general 
characteristics of networks, HS

d requires that the flow on edges (va, v) 
and (v, vb) are equal. The min-cost flow problem with equal integral 
flow constraint is a difficult problem (NP-hard) [2]. First of all, after 
we form the flow network, it becomes straight forward to reduce the 
problem into an ILP problem so we can take advantage of existing 
ILP solvers. Meanwhile, we are aware of the potential drawback of 
high runtime complexity of ILP. Since we are interested in the 
optimality study for our problem, we take the ILP approach in our 
experimental results. We observe that the average runtime for 
benchmarks with less than 100 nodes is 0.01s. However, for large 
designs with more than 100 nodes, the average runtime can be in the 
range of several hours. To trade off solution quality with runtime, 
we can also use heuristic algorithms. One such an algorithm was 
presented in [3], where the authors used a Lagrangian relaxation 
technique to tackle the min-cost equal-flow problem. They could 
solve problems with up to 1500 nodes and 6000 edges. They 
reported solutions within 1% of the optimum with 1%-65% of the 
runtime compared to a traditional branch and bound algorithm. 

Applying this heuristic and other heuristics and observing their 
quality/runtime tradeoff potentials belong to our future work. 
 
5. EXPERIMENTAL RESULTS 
To examine the quality gap between our optimal solution and 
heuristic solutions, we implemented a heuristic algorithm published 
in [14] for comparison purpose. The main idea in [14] was to 
perform the resource- and time-constrained scheduling to maximize 
the number of extended operations for low Vdd. It started with an 
initial schedule assuming every operation was using VddH. Then, it 
iteratively assigned VddL to operations followed by a validation 
step using a list scheduling algorithm. The low-Vdd assignment was 
reversed if the operation extension would violate constraints. In 
other words, [14] implicitly bound operations to functional units and 
thus decided the voltages for these functional units under the 
resource constraint. Therefore, at the end of scheduling, a binding 
and voltage assignment solution was also generated. Although this 
algorithm dramatically increased the number of extended operations 
compared to a generic list scheduling without such a voltage 
assignment feature, it could not guarantee to extend the maximum 
number of operations for the scheduling solution it produced. In 
addition, there was no switching activity considered in this process. 

We use the benchmarks mentioned in Section II and compare our 
solution to the solution generated by [14]. To have a fair 
comparison, we use the same scheduling result generated by [14] 
but ignore its voltage and binding solution. We then run our 
algorithm honoring the time and resource constraints specified by 
the schedule. We take the voltage and timing data from [7], where 
adders need 1 cycle at VddH and 2 cycles at VddL, and multipliers 
need 3 cycles at VddH and 5 cycles at VddL. VddH is 1.3v and 
VddL is 0.8v under 100nm technology. We use simulation-based 
method with random input vectors to estimate switching activities 
between different operations. The simulation is similar to that used 
in [6]. The timing constraint for both [14] and our algorithm is the 
critical path latency (can be determined by an ASAP scheduling 
algorithm at the beginning). 

Table 2 lists the results of extended operations. The second and 
third columns are the numbers of extendable additions and 
multiplications. The fourth and fifth columns list the numbers of 
extended operations by the algorithm in [14]. The last two columns 
list the results, MaxEf, from our algorithm. For certain benchmarks, 
we observe a large percentage of improvement (e.g., 67% 
improvement on multiplications for mcm). On average, we observe 
7% improvement over [14]. This indicates that the number of VddL 
extensions decided by [14] is already close to the optimal values for 
this set of benchmarks. 

Table 3 summarizes switching activity (SA) and power results. 
The column Lower Bound shows the minimum switching activities 
when all operations work at VddH. These data can be calculated by 
the algorithm in [4], which is an optimal resource binding algorithm 
for switching activity reduction under single Vdd. We denote the 
binding solution space as QH when all operations work at VddH. 
After extending some operations, the new binding solution space 
QHL would be equal or smaller than QH, since some compatible 
operations with VddH may not be compatible any more after 
assigning to VddL, and thus the solution space is reduced. Therefore, 
given a scheduled DFG, the minimum switching activity of any 
binding solution after extending some operations must be equal to 
or greater than the results given by [4]. We need to mention that 
given the maximum number of VddL extensions (i.e., given a 
solution space QHL), our algorithm can achieve the minimal 
switching activity as shown in Section IV. The heuristic column 
corresponds to the binding solutions in [14], and the min-flow 



column lists the result given by our algorithm. We can observe that 
our algorithm achieves obvious improvement in switching activity 
reduction. On average, our switching activity result is 20% smaller 
and our power result is 23% smaller (power reduction is larger due 
to larger number of low-Vdd operations in our solution). Also, 
compared to switching activity lower bound, our algorithm is only 
4% higher, which shows that we do not need to sacrifice much on 
switching activity for assigning low-Vdd to operations.  

It is worth mentioning that because both heuristic and min-flow 
have the same resource bound, the leakage values of the designs 
from these two algorithms are similar. When min-flow uses a larger 
number of VddL functional units, the leakage power of the design 
actually will become smaller than what heuristic does. The reason 
behind this is that when threshold voltage is maintained as a 
constant as the case in our study, leakage power scales down for 
VddL due to the scaling of VDS (drain/source potential difference) 
and VGS (gate/source potential difference).  

Table 2. Comparison of Extended Operations 
Max Extendable Heuristic [14] Min-flow Bench- 

marks ADD MUL ADD MUL ADD MUL 
aircraft 31 180 0 56 0 56 
chem 5 77 5 21 5 21 
dir 2 34 0 12 0 12 
honda 7 26 4 4 5 4 
lee 12 8 5 6 6 6 
mcm 5 6 2 3 2 5 
pr 6 6 0 2 0 2 
u5ml 29 155 7 28 8 28 
wang 10 6 4 2 4 2 

Table 3. Comparison of Switching Activities (SA) and Power 
Lower 
Bound Heuristic [14] Min-flow Bench- 

marks 
SA SA Pow(W) SA Pow(W) 

aircraft 0.0474  0.0602  4.695 0.0484  3.648 
chem 0.0445  0.0557  3.716 0.0450  2.971 
dir 0.0421  0.0520  1.213 0.0435  0.986 
honda 0.0441  0.0508  1.006 0.0443  0.880 
lee 0.0780  0.1047  0.873 0.0826  0.561 
mcm 0.0150  0.0221  0.346 0.0163  0.255 
pr 0.0838  0.1384  0.914 0.0936  0.618 
u5ml 0.0431  0.0575  6.670 0.0434  4.967 
wang 0.1020  0.1190  1.006 0.1044  0.863 
Avg. - 1 1 -20% -23% 

 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we presented a network flow-based formulation for the 
low-power resource binding problem, considering multi-Vdds and 
switching activity simultaneously, while assuming that each 
functional unit has a fixed Vdd level. Experimental results show that 
the optimal solution computed based on our formulation provides 
7% more low-Vdd operations and also reduces the total switching 
activity by 20% compared to one of the best known heuristic 
algorithms that consider multi-Vdd assignments only. Currently, we 
are studying the exact complexity of this problem based on our 
network flow formulation. Moreover, we are considering 
operational chaining and pipelined functional units into our problem 
formulation.  
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